Mods and bugfixes for LLFF and Blender repros

Summary:
LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask.

Also, we had a bug in stats loading, like this:
  * Load stats
  * One of the stats has a history of length 0
  * That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0
  * Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat"
  * Ooops the reference-stat happened to be the stat with length 0
  * assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert

Also some minor fixes (from Jeremy's other diff) to support LLFF

Reviewed By: davnov134

Differential Revision: D38475272

fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
This commit is contained in:
Krzysztof Chalupka 2022-08-09 15:04:44 -07:00 committed by Facebook GitHub Bot
parent 624bc5a274
commit c83ec3555d
11 changed files with 51 additions and 25 deletions

View File

@ -1,7 +1,7 @@
defaults:
- repro_singleseq_base
- _self_
exp_dir: "./data/nerf_blender_publ/${oc.env:BLENDER_SINGLESEQ_CLASS}"
exp_dir: "./data/nerf_blender_repro/${oc.env:BLENDER_SINGLESEQ_CLASS}"
data_source_ImplicitronDataSource_args:
data_loader_map_provider_SequenceDataLoaderMapProvider_args:
dataset_length_train: 100
@ -16,17 +16,18 @@ data_source_ImplicitronDataSource_args:
model_factory_ImplicitronModelFactory_args:
model_GenericModel_args:
raysampler_AdaptiveRaySampler_args:
mask_images: false
raysampler_class_type: NearFarRaySampler
raysampler_NearFarRaySampler_args:
n_rays_per_image_sampled_from_mask: 4096
scene_extent: 2.0
min_depth: 2
max_depth: 6
renderer_MultiPassEmissionAbsorptionRenderer_args:
density_noise_std_train: 1.0
n_pts_per_ray_fine_training: 128
n_pts_per_ray_fine_evaluation: 128
raymarcher_EmissionAbsorptionRaymarcher_args:
blend_output: true
bg_color:
- 1.0
blend_output: false
loss_weights:
loss_rgb_mse: 1.0
loss_prev_stage_rgb_mse: 1.0
@ -35,11 +36,11 @@ model_factory_ImplicitronModelFactory_args:
loss_autodecoder_norm: 0.00
optimizer_factory_ImplicitronOptimizerFactory_args:
exponential_lr_step_size: 3001
exponential_lr_step_size: 2500
lr_policy: Exponential
training_loop_ImplicitronTrainingLoop_args:
max_epochs: 3001
max_epochs: 2000
metric_print_interval: 100
store_checkpoints_purge: 3
test_when_finished: true

View File

@ -249,6 +249,7 @@ class ImplicitronTrainingLoop(TrainingLoopBase): # pyre-ignore [13]
stats = Stats(
# log_vars should be a list, but OmegaConf might load them as ListConfig
list(log_vars),
plot_file=os.path.join(exp_dir, "train_stats.pdf"),
visdom_env=visdom_env_charts,
verbose=False,
visdom_server=self.visdom_server,

View File

@ -95,6 +95,7 @@ data_source_ImplicitronDataSource_args:
n_known_frames_for_test: null
path_manager_factory_PathManagerFactory_args:
silence_logs: true
downscale_factor: 4
dataset_map_provider_RenderedMeshDatasetMapProvider_args:
num_views: 40
data_file: null

View File

@ -162,7 +162,7 @@ class TestExperiment(unittest.TestCase):
class TestNerfRepro(unittest.TestCase):
@unittest.skip("This runs full NeRF training on Blender data.")
@unittest.skip("This test runs full blender training.")
def test_nerf_blender(self):
# Train vanilla NERF.
# Set env vars BLENDER_DATASET_ROOT and BLENDER_SINGLESEQ_CLASS first!
@ -174,6 +174,22 @@ class TestNerfRepro(unittest.TestCase):
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test runs full llff training.")
def test_nerf_llff(self):
# Train vanilla NERF.
# Set env vars LLFF_DATASET_ROOT and LLFF_SINGLESEQ_CLASS first!
LLFF_SINGLESEQ_CLASS = os.environ["LLFF_SINGLESEQ_CLASS"]
if not interactive_testing_requested():
return
with initialize_config_dir(config_dir=str(IMPLICITRON_CONFIGS_DIR)):
cfg = compose(
config_name=f"repro_singleseq_nerf_llff_{LLFF_SINGLESEQ_CLASS}",
overrides=[],
)
experiment_runner = experiment.Experiment(**cfg)
experiment.dump_cfg(cfg)
experiment_runner.run()
@unittest.skip("This test checks resuming of the NeRF training.")
def test_nerf_blender_resume(self):
# Train one train batch of NeRF, then resume for one more batch.

View File

@ -32,17 +32,21 @@ class LlffDatasetMapProvider(SingleSceneDatasetMapProviderBase):
and test datasets, and this many random training frames are added to
each test batch. If not set, test batches each contain just a single
testing frame.
downscale_factor: determines image sizes.
"""
downscale_factor: int = 4
def _load_data(self) -> None:
path_manager = self.path_manager_factory.get()
images, poses, _ = load_llff_data(
self.base_dir, factor=8, path_manager=path_manager
self.base_dir, factor=self.downscale_factor, path_manager=path_manager
)
hwf = poses[0, :3, -1]
poses = poses[:, :3, :4]
i_test = np.arange(images.shape[0])[::8]
llffhold = 8
i_test = np.arange(images.shape[0])[::llffhold]
i_test_index = set(i_test.tolist())
i_train = np.array(
[i for i in np.arange(images.shape[0]) if i not in i_test_index]

View File

@ -27,6 +27,7 @@ from .utils import DATASET_TYPE_KNOWN, DATASET_TYPE_UNKNOWN
_SINGLE_SEQUENCE_NAME: str = "one_sequence"
@expand_args_fields
class SingleSceneDataset(DatasetBase, Configurable):
"""
A dataset from images from a single scene.
@ -110,7 +111,6 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
def _get_dataset(
self, split_idx: int, frame_type: str, set_eval_batches: bool = False
) -> SingleSceneDataset:
expand_args_fields(SingleSceneDataset)
# pyre-ignore[16]
split = self.i_split[split_idx]
frame_types = [frame_type] * len(split)

View File

@ -245,13 +245,20 @@ def eval_batch(
if frame_data.mask_crop is None:
warnings.warn("mask_crop is None, assuming the whole image is valid.")
if frame_data.fg_probability is None:
warnings.warn("fg_probability is None, assuming the whole image is fg.")
# threshold the masks to make ground truth binary masks
# pyre-ignore [58]
mask_fg = frame_data.fg_probability >= mask_thr
mask_fg = (
frame_data.fg_probability >= mask_thr
if frame_data.fg_probability is not None
# pyre-ignore [16]
else torch.ones_like(frame_data.image_rgb[:, :1, ...]).bool()
)
mask_crop = (
frame_data.mask_crop
if frame_data.mask_crop is not None
# pyre-ignore [6]
else torch.ones_like(mask_fg)
)
@ -259,7 +266,6 @@ def eval_batch(
# pyre-fixme[6]: Expected `Tensor` for 1st param but got
# `Optional[torch.Tensor]`.
frame_data.image_rgb,
# pyre-ignore [6]
mask_fg,
bg_color=bg_color,
)
@ -275,7 +281,6 @@ def eval_batch(
# pyre-fixme[6]: Expected `Tensor` for 4th param but got
# `Optional[torch.Tensor]`.
depth_map=frame_data.depth_map,
# pyre-fixme[16]: `Optional` has no attribute `__getitem__`.
depth_mask=frame_data.depth_mask[:1],
visdom_env=visualize_visdom_env,
)
@ -284,7 +289,7 @@ def eval_batch(
results["iou"] = iou(
cloned_render["mask_render"],
mask_fg, # pyre-ignore [6]
mask_fg,
mask=mask_crop,
)

View File

@ -13,8 +13,8 @@ from typing import Any, Dict, List, Optional, Tuple
import lpips
import torch
import tqdm
import tqdm
from pytorch3d.implicitron.dataset import utils as ds_utils
from pytorch3d.implicitron.evaluation import evaluate_new_view_synthesis as evaluate

View File

@ -198,7 +198,6 @@ class Stats(object):
if verbose:
print(f"Adding {add_log_var}")
self.log_vars.append(add_log_var)
# self.synchronize_logged_vars(self.log_vars, verbose=verbose)
def update(self, preds, time_start=None, freeze_iter=False, stat_set="train"):
@ -230,7 +229,6 @@ class Stats(object):
elapsed = time.time() - time_start
time_per_it = float(elapsed) / float(it + 1)
val = time_per_it
# self.stats[stat_set]['sec/it'].update(time_per_it,epoch=epoch,n=1)
else:
if stat in preds:
try:
@ -441,7 +439,6 @@ class Stats(object):
self.log_vars = log_vars # !!!
for stat_set in stat_sets:
reference_stat = list(self.stats[stat_set].keys())[0]
for stat in log_vars:
if stat not in self.stats[stat_set]:
if verbose:
@ -468,12 +465,11 @@ class Stats(object):
lastep = self.epoch + 1
for ep in range(lastep):
self.stats[stat_set][stat].update(default_val, n=1, epoch=ep)
epoch_self = self.stats[stat_set][reference_stat].get_epoch()
epoch_generated = self.stats[stat_set][stat].get_epoch()
assert (
epoch_self == epoch_generated
epoch_generated == self.epoch + 1
), "bad epoch of synchronized log_var! %d vs %d" % (
epoch_self,
self.epoch + 1,
epoch_generated,
)

View File

@ -83,6 +83,7 @@ dataset_map_provider_LlffDatasetMapProvider_args:
n_known_frames_for_test: null
path_manager_factory_PathManagerFactory_args:
silence_logs: true
downscale_factor: 4
dataset_map_provider_RenderedMeshDatasetMapProvider_args:
num_views: 40
data_file: null

View File

@ -69,6 +69,7 @@ class TestDataLlff(TestCaseMixin, unittest.TestCase):
provider = LlffDatasetMapProvider(
base_dir="manifold://co3d/tree/nerf_data/nerf_llff_data/fern",
object_name="fern",
downscale_factor=8,
)
dataset_map = provider.get_dataset_map()
known_matrix = torch.zeros(1, 4, 4)