mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
transforms 3d convention fix
Summary: Fixed the rotation matrices generated by the RotateAxisAngle class and updated the tests. Added documentation for Transforms3d to clarify the conventions. Reviewed By: gkioxari Differential Revision: D19912903 fbshipit-source-id: c64926ce4e1381b145811557c32b73663d6d92d1
This commit is contained in:
parent
bdc2bb578c
commit
8301163d24
@ -5,6 +5,32 @@ import functools
|
||||
import torch
|
||||
|
||||
|
||||
"""
|
||||
The transformation matrices returned from the functions in this file assume
|
||||
the points on which the transformation will be applied are column vectors.
|
||||
i.e. the R matrix is structured as
|
||||
|
||||
R = [
|
||||
[Rxx, Rxy, Rxz],
|
||||
[Ryx, Ryy, Ryz],
|
||||
[Rzx, Rzy, Rzz],
|
||||
] # (3, 3)
|
||||
|
||||
This matrix can be applied to column vectors by post multiplication
|
||||
by the points e.g.
|
||||
|
||||
points = [[0], [1], [2]] # (3 x 1) xyz coordinates of a point
|
||||
transformed_points = R * points
|
||||
|
||||
To apply the same matrix to points which are row vectors, the R matrix
|
||||
can be transposed and pre multiplied by the points:
|
||||
|
||||
e.g.
|
||||
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
|
||||
transformed_points = points * R.transpose(1, 0)
|
||||
"""
|
||||
|
||||
|
||||
def quaternion_to_matrix(quaternions):
|
||||
"""
|
||||
Convert rotations given as quaternions to rotation matrices.
|
||||
@ -80,7 +106,7 @@ def matrix_to_quaternion(matrix):
|
||||
return torch.stack((o0, o1, o2, o3), -1)
|
||||
|
||||
|
||||
def _primary_matrix(axis: str, angle):
|
||||
def _axis_angle_rotation(axis: str, angle):
|
||||
"""
|
||||
Return the rotation matrices for one of the rotations about an axis
|
||||
of which Euler angles describe, for each value of the angle given.
|
||||
@ -92,17 +118,20 @@ def _primary_matrix(axis: str, angle):
|
||||
Returns:
|
||||
Rotation matrices as tensor of shape (..., 3, 3).
|
||||
"""
|
||||
|
||||
cos = torch.cos(angle)
|
||||
sin = torch.sin(angle)
|
||||
one = torch.ones_like(angle)
|
||||
zero = torch.zeros_like(angle)
|
||||
|
||||
if axis == "X":
|
||||
o = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
||||
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
||||
if axis == "Y":
|
||||
o = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
||||
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
||||
if axis == "Z":
|
||||
o = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
||||
return torch.stack(o, -1).reshape(angle.shape + (3, 3))
|
||||
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
||||
|
||||
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
||||
|
||||
|
||||
def euler_angles_to_matrix(euler_angles, convention: str):
|
||||
@ -126,7 +155,9 @@ def euler_angles_to_matrix(euler_angles, convention: str):
|
||||
for letter in convention:
|
||||
if letter not in ("X", "Y", "Z"):
|
||||
raise ValueError(f"Invalid letter {letter} in convention string.")
|
||||
matrices = map(_primary_matrix, convention, torch.unbind(euler_angles, -1))
|
||||
matrices = map(
|
||||
_axis_angle_rotation, convention, torch.unbind(euler_angles, -1)
|
||||
)
|
||||
return functools.reduce(torch.matmul, matrices)
|
||||
|
||||
|
||||
|
@ -5,6 +5,8 @@ import math
|
||||
import warnings
|
||||
import torch
|
||||
|
||||
from .rotation_conversions import _axis_angle_rotation
|
||||
|
||||
|
||||
class Transform3d:
|
||||
"""
|
||||
@ -103,12 +105,35 @@ class Transform3d:
|
||||
s1_params -= lr * s1_params.grad
|
||||
t_params -= lr * t_params.grad
|
||||
s2_params -= lr * s2_params.grad
|
||||
|
||||
CONVENTIONS
|
||||
We adopt a right-hand coordinate system, meaning that rotation about an axis
|
||||
with a positive angle results in a counter clockwise rotation.
|
||||
|
||||
This class assumes that transformations are applied on inputs which
|
||||
are row vectors. The internal representation of the Nx4x4 transformation
|
||||
matrix is of the form:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
M = [
|
||||
[Rxx, Ryx, Rzx, 0],
|
||||
[Rxy, Ryy, Rzy, 0],
|
||||
[Rxz, Ryz, Rzz, 0],
|
||||
[Tx, Ty, Tz, 1],
|
||||
]
|
||||
|
||||
To apply the transformation to points which are row vectors, the M matrix
|
||||
can be pre multiplied by the points:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
points = [[0, 1, 2]] # (1 x 3) xyz coordinates of a point
|
||||
transformed_points = points * M
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, dtype=torch.float32, device="cpu"):
|
||||
"""
|
||||
This class assumes a row major ordering for all matrices.
|
||||
"""
|
||||
self._matrix = torch.eye(4, dtype=dtype, device=device).view(1, 4, 4)
|
||||
self._transforms = [] # store transforms to compose
|
||||
self._lu = None
|
||||
@ -493,9 +518,12 @@ class RotateAxisAngle(Rotate):
|
||||
Create a new Transform3d representing 3D rotation about an axis
|
||||
by an angle.
|
||||
|
||||
Assuming a right-hand coordinate system, positive rotation angles result
|
||||
in a counter clockwise rotation.
|
||||
|
||||
Args:
|
||||
angle:
|
||||
- A torch tensor of shape (N, 1)
|
||||
- A torch tensor of shape (N,)
|
||||
- A python scalar
|
||||
- A torch scalar
|
||||
axis:
|
||||
@ -509,21 +537,11 @@ class RotateAxisAngle(Rotate):
|
||||
raise ValueError(msg % axis)
|
||||
angle = _handle_angle_input(angle, dtype, device, "RotateAxisAngle")
|
||||
angle = (angle / 180.0 * math.pi) if degrees else angle
|
||||
N = angle.shape[0]
|
||||
|
||||
cos = torch.cos(angle)
|
||||
sin = torch.sin(angle)
|
||||
one = torch.ones_like(angle)
|
||||
zero = torch.zeros_like(angle)
|
||||
|
||||
if axis == "X":
|
||||
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
||||
if axis == "Y":
|
||||
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
||||
if axis == "Z":
|
||||
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
||||
|
||||
R = torch.stack(R_flat, -1).reshape((N, 3, 3))
|
||||
# We assume the points on which this transformation will be applied
|
||||
# are row vectors. The rotation matrix returned from _axis_angle_rotation
|
||||
# is for transforming column vectors. Therefore we transpose this matrix.
|
||||
# R will always be of shape (N, 3, 3)
|
||||
R = _axis_angle_rotation(axis, angle).transpose(1, 2)
|
||||
super().__init__(device=device, R=R)
|
||||
|
||||
|
||||
@ -606,19 +624,16 @@ def _handle_input(
|
||||
def _handle_angle_input(x, dtype, device: str, name: str):
|
||||
"""
|
||||
Helper function for building a rotation function using angles.
|
||||
The output is always of shape (N, 1).
|
||||
The output is always of shape (N,).
|
||||
|
||||
The input can be one of:
|
||||
- Torch tensor (N, 1) or (N)
|
||||
- Torch tensor of shape (N,)
|
||||
- Python scalar
|
||||
- Torch scalar
|
||||
"""
|
||||
# If x is actually a tensor of shape (N, 1) then just return it
|
||||
if torch.is_tensor(x) and x.dim() == 2:
|
||||
if x.shape[1] != 1:
|
||||
msg = "Expected tensor of shape (N, 1); got %r (in %s)"
|
||||
raise ValueError(msg % (x.shape, name))
|
||||
return x
|
||||
if torch.is_tensor(x) and x.dim() > 1:
|
||||
msg = "Expected tensor of shape (N,); got %r (in %s)"
|
||||
raise ValueError(msg % (x.shape, name))
|
||||
else:
|
||||
return _handle_coord(x, dtype, device)
|
||||
|
||||
|
@ -8,6 +8,7 @@ import unittest
|
||||
import torch
|
||||
|
||||
from pytorch3d.transforms.rotation_conversions import (
|
||||
_axis_angle_rotation,
|
||||
euler_angles_to_matrix,
|
||||
matrix_to_euler_angles,
|
||||
matrix_to_quaternion,
|
||||
@ -118,7 +119,6 @@ class TestRotationConversion(unittest.TestCase):
|
||||
def test_to_euler(self):
|
||||
"""mtx -> euler -> mtx"""
|
||||
data = random_rotations(13, dtype=torch.float64)
|
||||
|
||||
for convention in self._all_euler_angle_conventions():
|
||||
euler_angles = matrix_to_euler_angles(data, convention)
|
||||
mdata = euler_angles_to_matrix(euler_angles, convention)
|
||||
|
@ -120,7 +120,7 @@ class TestTransform(unittest.TestCase):
|
||||
self.assertTrue(torch.allclose(normals_out, normals_out_expected))
|
||||
|
||||
def test_rotate_axis_angle(self):
|
||||
t = Transform3d().rotate_axis_angle(-90.0, axis="Z")
|
||||
t = Transform3d().rotate_axis_angle(90.0, axis="Z")
|
||||
points = torch.tensor(
|
||||
[[0.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 1.0, 1.0]]
|
||||
).view(1, 3, 3)
|
||||
@ -737,15 +737,23 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([0.0, 1.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 0.0, 1.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix))
|
||||
|
||||
def test_rotate_x_torch_scalar(self):
|
||||
@ -755,15 +763,23 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([0.0, 1.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 0.0, 1.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
def test_rotate_x_torch_tensor(self):
|
||||
@ -781,23 +797,23 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
[0.0, 0.0, 0.0, 1.0],
|
||||
],
|
||||
[
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, r2_2, -r2_i, 0.0], # noqa: E241, E201
|
||||
[0.0, r2_i, r2_2, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, r2_2, r2_i, 0.0], # noqa: E241, E201
|
||||
[0.0, -r2_i, r2_2, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
],
|
||||
[
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
angle = angle[..., None] # (N, 1)
|
||||
angle = angle
|
||||
t = RotateAxisAngle(angle=angle, axis="X")
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
@ -807,33 +823,54 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([1.0, 0.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 0.0, -1.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
def test_rotate_y_torch_scalar(self):
|
||||
"""
|
||||
Test rotation about Y axis. With a right hand coordinate system this
|
||||
should result in a vector pointing along the x-axis being rotated to
|
||||
point along the negative z axis.
|
||||
"""
|
||||
angle = torch.tensor(90.0)
|
||||
t = RotateAxisAngle(angle=angle, axis="Y")
|
||||
# fmt: off
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([1.0, 0.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 0.0, -1.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
def test_rotate_y_torch_tensor(self):
|
||||
@ -851,16 +888,16 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
[0.0, 0.0, 0.0, 1.0],
|
||||
],
|
||||
[
|
||||
[ r2_2, 0.0, r2_i, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-r2_i, 0.0, r2_2, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[r2_2, 0.0, -r2_i, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[r2_i, 0.0, r2_2, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
],
|
||||
[
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -874,15 +911,23 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([1.0, 0.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 1.0, 0.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
def test_rotate_z_torch_scalar(self):
|
||||
@ -892,15 +937,23 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
)
|
||||
# fmt: on
|
||||
points = torch.tensor([1.0, 0.0, 0.0])[None, None, :] # (1, 1, 3)
|
||||
transformed_points = t.transform_points(points)
|
||||
expected_points = torch.tensor([0.0, 1.0, 0.0])
|
||||
self.assertTrue(
|
||||
torch.allclose(
|
||||
transformed_points.squeeze(), expected_points, atol=1e-7
|
||||
)
|
||||
)
|
||||
self.assertTrue(torch.allclose(t._matrix, matrix, atol=1e-7))
|
||||
|
||||
def test_rotate_z_torch_tensor(self):
|
||||
@ -918,16 +971,16 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
[0.0, 0.0, 0.0, 1.0],
|
||||
],
|
||||
[
|
||||
[r2_2, -r2_i, 0.0, 0.0], # noqa: E241, E201
|
||||
[r2_i, r2_2, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ r2_2, r2_i, 0.0, 0.0], # noqa: E241, E201
|
||||
[-r2_i, r2_2, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
],
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -945,10 +998,10 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix1 = torch.tensor(
|
||||
[
|
||||
[
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -956,10 +1009,10 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix2 = torch.tensor(
|
||||
[
|
||||
[
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[0.0, 0.0, -1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -967,10 +1020,10 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix3 = torch.tensor(
|
||||
[
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -987,10 +1040,10 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
@ -1004,10 +1057,10 @@ class TestRotateAxisAngle(unittest.TestCase):
|
||||
matrix = torch.tensor(
|
||||
[
|
||||
[
|
||||
[0.0, -1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
[ 0.0, 1.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[-1.0, 0.0, 0.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 1.0, 0.0], # noqa: E241, E201
|
||||
[ 0.0, 0.0, 0.0, 1.0], # noqa: E241, E201
|
||||
]
|
||||
],
|
||||
dtype=torch.float32,
|
||||
|
Loading…
x
Reference in New Issue
Block a user