pytorch3d/tests/test_rotation_conversions.py
Nikhila Ravi 8301163d24 transforms 3d convention fix
Summary: Fixed the rotation matrices generated by the RotateAxisAngle class and updated the tests. Added documentation for Transforms3d to clarify the conventions.

Reviewed By: gkioxari

Differential Revision: D19912903

fbshipit-source-id: c64926ce4e1381b145811557c32b73663d6d92d1
2020-02-19 10:32:44 -08:00

161 lines
6.3 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import itertools
import math
import unittest
import torch
from pytorch3d.transforms.rotation_conversions import (
_axis_angle_rotation,
euler_angles_to_matrix,
matrix_to_euler_angles,
matrix_to_quaternion,
quaternion_apply,
quaternion_multiply,
quaternion_to_matrix,
random_quaternions,
random_rotation,
random_rotations,
)
class TestRandomRotation(unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
def test_random_rotation_invariant(self):
"""The image of the x-axis isn't biased among quadrants."""
N = 1000
base = random_rotation()
quadrants = list(itertools.product([False, True], repeat=3))
matrices = random_rotations(N)
transformed = torch.matmul(base, matrices)
transformed2 = torch.matmul(matrices, base)
for k, results in enumerate([matrices, transformed, transformed2]):
counts = {i: 0 for i in quadrants}
for j in range(N):
counts[tuple(i.item() > 0 for i in results[j, 0])] += 1
average = N / 8.0
counts_tensor = torch.tensor(list(counts.values()))
chisquare_statistic = torch.sum(
(counts_tensor - average) * (counts_tensor - average) / average
)
# The 0.1 significance level for chisquare(8-1) is
# scipy.stats.chi2(7).ppf(0.9) == 12.017.
self.assertLess(
chisquare_statistic, 12, (counts, chisquare_statistic, k)
)
class TestRotationConversion(unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
def test_from_quat(self):
"""quat -> mtx -> quat"""
data = random_quaternions(13, dtype=torch.float64)
mdata = matrix_to_quaternion(quaternion_to_matrix(data))
self.assertTrue(torch.allclose(data, mdata))
def test_to_quat(self):
"""mtx -> quat -> mtx"""
data = random_rotations(13, dtype=torch.float64)
mdata = quaternion_to_matrix(matrix_to_quaternion(data))
self.assertTrue(torch.allclose(data, mdata))
def test_quat_grad_exists(self):
"""Quaternion calculations are differentiable."""
rotation = random_rotation(requires_grad=True)
modified = quaternion_to_matrix(matrix_to_quaternion(rotation))
[g] = torch.autograd.grad(modified.sum(), rotation)
self.assertTrue(torch.isfinite(g).all())
def _tait_bryan_conventions(self):
return map("".join, itertools.permutations("XYZ"))
def _proper_euler_conventions(self):
letterpairs = itertools.permutations("XYZ", 2)
return (l0 + l1 + l0 for l0, l1 in letterpairs)
def _all_euler_angle_conventions(self):
return itertools.chain(
self._tait_bryan_conventions(), self._proper_euler_conventions()
)
def test_conventions(self):
"""The conventions listings have the right length."""
all = list(self._all_euler_angle_conventions())
self.assertEqual(len(all), 12)
self.assertEqual(len(set(all)), 12)
def test_from_euler(self):
"""euler -> mtx -> euler"""
n_repetitions = 10
# tolerance is how much we keep the middle angle away from the extreme
# allowed values which make the calculation unstable (Gimbal lock).
tolerance = 0.04
half_pi = math.pi / 2
data = torch.zeros(n_repetitions, 3)
data.uniform_(-math.pi, math.pi)
data[:, 1].uniform_(-half_pi + tolerance, half_pi - tolerance)
for convention in self._tait_bryan_conventions():
matrices = euler_angles_to_matrix(data, convention)
mdata = matrix_to_euler_angles(matrices, convention)
self.assertTrue(torch.allclose(data, mdata))
data[:, 1] += half_pi
for convention in self._proper_euler_conventions():
matrices = euler_angles_to_matrix(data, convention)
mdata = matrix_to_euler_angles(matrices, convention)
self.assertTrue(torch.allclose(data, mdata))
def test_to_euler(self):
"""mtx -> euler -> mtx"""
data = random_rotations(13, dtype=torch.float64)
for convention in self._all_euler_angle_conventions():
euler_angles = matrix_to_euler_angles(data, convention)
mdata = euler_angles_to_matrix(euler_angles, convention)
self.assertTrue(torch.allclose(data, mdata))
def test_euler_grad_exists(self):
"""Euler angle calculations are differentiable."""
rotation = random_rotation(dtype=torch.float64, requires_grad=True)
for convention in self._all_euler_angle_conventions():
euler_angles = matrix_to_euler_angles(rotation, convention)
mdata = euler_angles_to_matrix(euler_angles, convention)
[g] = torch.autograd.grad(mdata.sum(), rotation)
self.assertTrue(torch.isfinite(g).all())
def test_quaternion_multiplication(self):
"""Quaternion and matrix multiplication are equivalent."""
a = random_quaternions(15, torch.float64).reshape((3, 5, 4))
b = random_quaternions(21, torch.float64).reshape((7, 3, 1, 4))
ab = quaternion_multiply(a, b)
self.assertEqual(ab.shape, (7, 3, 5, 4))
a_matrix = quaternion_to_matrix(a)
b_matrix = quaternion_to_matrix(b)
ab_matrix = torch.matmul(a_matrix, b_matrix)
ab_from_matrix = matrix_to_quaternion(ab_matrix)
self.assertEqual(ab.shape, ab_from_matrix.shape)
self.assertTrue(torch.allclose(ab, ab_from_matrix))
def test_quaternion_application(self):
"""Applying a quaternion is the same as applying the matrix."""
quaternions = random_quaternions(3, torch.float64, requires_grad=True)
matrices = quaternion_to_matrix(quaternions)
points = torch.randn(3, 3, dtype=torch.float64, requires_grad=True)
transform1 = quaternion_apply(quaternions, points)
transform2 = torch.matmul(matrices, points[..., None])[..., 0]
self.assertTrue(torch.allclose(transform1, transform2))
[p, q] = torch.autograd.grad(transform1.sum(), [points, quaternions])
self.assertTrue(torch.isfinite(p).all())
self.assertTrue(torch.isfinite(q).all())