mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-14 10:56:56 +08:00
@@ -30,8 +30,8 @@ def test_attention():
|
||||
"flash_attn": requested_attention,
|
||||
}
|
||||
)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer["tokenizer"], model_args, finetuning_args)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args)
|
||||
for module in model.modules():
|
||||
if "Attention" in module.__class__.__name__:
|
||||
assert module.__class__.__name__ == llama_attention_classes[requested_attention]
|
||||
61
tests/model/test_freeze.py
Normal file
61
tests/model/test_freeze.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "freeze",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
def test_freeze_all_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"freeze_trainable_layers": 1,
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1."):
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
def test_freeze_extra_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"freeze_trainable_layers": 1,
|
||||
"freeze_extra_modules": "embed_tokens,lm_head",
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
33
tests/model/test_full.py
Normal file
33
tests/model/test_full.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "full",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
def test_full():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(TRAINING_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for param in model.parameters():
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
Reference in New Issue
Block a user