LLaMA-Factory/tests/model/model_utils/test_attention.py
hiyouga ce40d12692 release v0.8.0
Former-commit-id: 5aa4ce47567146cd97c61623018153b41d7c1278
2024-06-08 05:20:54 +08:00

38 lines
1.2 KiB
Python

import os
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
from llamafactory.hparams import get_infer_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
def test_attention():
attention_available = ["off"]
if is_torch_sdpa_available():
attention_available.append("sdpa")
if is_flash_attn_2_available():
attention_available.append("fa2")
llama_attention_classes = {
"off": "LlamaAttention",
"sdpa": "LlamaSdpaAttention",
"fa2": "LlamaFlashAttention2",
}
for requested_attention in attention_available:
model_args, _, finetuning_args, _ = get_infer_args(
{
"model_name_or_path": TINY_LLAMA,
"template": "llama2",
"flash_attn": requested_attention,
}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args)
for module in model.modules():
if "Attention" in module.__class__.__name__:
assert module.__class__.__name__ == llama_attention_classes[requested_attention]