LLaMA-Factory/tests/model/test_freeze.py
hiyouga ce40d12692 release v0.8.0
Former-commit-id: 5aa4ce47567146cd97c61623018153b41d7c1278
2024-06-08 05:20:54 +08:00

62 lines
2.0 KiB
Python

import os
import torch
from llamafactory.hparams import get_train_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
TRAINING_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "freeze",
"dataset": "llamafactory/tiny_dataset",
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
def test_freeze_all_modules():
model_args, _, _, finetuning_args, _ = get_train_args(
{
"freeze_trainable_layers": 1,
**TRAINING_ARGS,
}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
for name, param in model.named_parameters():
if name.startswith("model.layers.1."):
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16
def test_freeze_extra_modules():
model_args, _, _, finetuning_args, _ = get_train_args(
{
"freeze_trainable_layers": 1,
"freeze_extra_modules": "embed_tokens,lm_head",
**TRAINING_ARGS,
}
)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
for name, param in model.named_parameters():
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
assert param.requires_grad is True
assert param.dtype == torch.float32
else:
assert param.requires_grad is False
assert param.dtype == torch.float16