mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: 1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own. 2. Refactored to use the same code for the Pointclouds mask and passed weights. 3. Added test cases with random weights. 4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ). Reviewed By: gkioxari Differential Revision: D20070293 fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
436 lines
16 KiB
Python
436 lines
16 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import numpy as np
|
|
import unittest
|
|
import torch
|
|
|
|
from common_testing import TestCaseMixin
|
|
|
|
from pytorch3d.ops import points_alignment
|
|
from pytorch3d.structures.pointclouds import Pointclouds
|
|
from pytorch3d.transforms import rotation_conversions
|
|
|
|
|
|
def _apply_pcl_transformation(X, R, T, s=None):
|
|
"""
|
|
Apply a batch of similarity/rigid transformations, parametrized with
|
|
rotation `R`, translation `T` and scale `s`, to an input batch of
|
|
point clouds `X`.
|
|
"""
|
|
if isinstance(X, Pointclouds):
|
|
num_points = X.num_points_per_cloud()
|
|
X_t = X.points_padded()
|
|
else:
|
|
X_t = X
|
|
|
|
if s is not None:
|
|
X_t = s[:, None, None] * X_t
|
|
|
|
X_t = torch.bmm(X_t, R) + T[:, None, :]
|
|
|
|
if isinstance(X, Pointclouds):
|
|
X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
|
|
X_t = Pointclouds(X_list)
|
|
|
|
return X_t
|
|
|
|
|
|
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
super().setUp()
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
|
|
@staticmethod
|
|
def random_rotation(batch_size, dim, device=None):
|
|
"""
|
|
Generates a batch of random `dim`-dimensional rotation matrices.
|
|
"""
|
|
if dim == 3:
|
|
R = rotation_conversions.random_rotations(batch_size, device=device)
|
|
else:
|
|
# generate random rotation matrices with orthogonalization of
|
|
# random normal square matrices, followed by a transformation
|
|
# that ensures determinant(R)==1
|
|
H = torch.randn(
|
|
batch_size, dim, dim, dtype=torch.float32, device=device
|
|
)
|
|
U, _, V = torch.svd(H)
|
|
E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
|
|
batch_size, 1, 1
|
|
)
|
|
E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
|
|
R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
|
|
assert torch.allclose(
|
|
torch.det(R), R.new_ones(batch_size), atol=1e-4
|
|
)
|
|
|
|
return R
|
|
|
|
@staticmethod
|
|
def init_point_cloud(
|
|
batch_size=10,
|
|
n_points=1000,
|
|
dim=3,
|
|
device=None,
|
|
use_pointclouds=False,
|
|
random_pcl_size=True,
|
|
):
|
|
"""
|
|
Generate a batch of normally distributed point clouds.
|
|
"""
|
|
if use_pointclouds:
|
|
assert dim == 3, "Pointclouds support only 3-dim points."
|
|
# generate a `batch_size` point clouds with number of points
|
|
# between 4 and `n_points`
|
|
if random_pcl_size:
|
|
n_points_per_batch = torch.randint(
|
|
low=4,
|
|
high=n_points,
|
|
size=(batch_size,),
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
X_list = [
|
|
torch.randn(
|
|
int(n_pt), dim, device=device, dtype=torch.float32
|
|
)
|
|
for n_pt in n_points_per_batch
|
|
]
|
|
X = Pointclouds(X_list)
|
|
else:
|
|
X = torch.randn(
|
|
batch_size,
|
|
n_points,
|
|
dim,
|
|
device=device,
|
|
dtype=torch.float32,
|
|
)
|
|
X = Pointclouds(list(X))
|
|
else:
|
|
X = torch.randn(
|
|
batch_size, n_points, dim, device=device, dtype=torch.float32
|
|
)
|
|
return X
|
|
|
|
@staticmethod
|
|
def generate_pcl_transformation(
|
|
batch_size=10, scale=False, reflect=False, dim=3, device=None
|
|
):
|
|
"""
|
|
Generate a batch of random rigid/similarity transformations.
|
|
"""
|
|
R = TestCorrespondingPointsAlignment.random_rotation(
|
|
batch_size, dim, device=device
|
|
)
|
|
T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
|
|
if scale:
|
|
s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
|
|
else:
|
|
s = torch.ones(batch_size, dtype=torch.float32, device=device)
|
|
|
|
return R, T, s
|
|
|
|
@staticmethod
|
|
def generate_random_reflection(batch_size=10, dim=3, device=None):
|
|
"""
|
|
Generate a batch of reflection matrices of shape (batch_size, dim, dim),
|
|
where M_i is an identity matrix with one random entry on the
|
|
diagonal equal to -1.
|
|
"""
|
|
# randomly select one of the dimensions to reflect for each
|
|
# element in the batch
|
|
dim_to_reflect = torch.randint(
|
|
low=0,
|
|
high=dim,
|
|
size=(batch_size,),
|
|
device=device,
|
|
dtype=torch.int64,
|
|
)
|
|
|
|
# convert dim_to_reflect to a batch of reflection matrices M
|
|
M = torch.diag_embed(
|
|
(
|
|
dim_to_reflect[:, None]
|
|
!= torch.arange(dim, device=device, dtype=torch.float32)
|
|
).float()
|
|
* 2
|
|
- 1,
|
|
dim1=1,
|
|
dim2=2,
|
|
)
|
|
|
|
return M
|
|
|
|
@staticmethod
|
|
def corresponding_points_alignment(
|
|
batch_size=10,
|
|
n_points=100,
|
|
dim=3,
|
|
use_pointclouds=False,
|
|
estimate_scale=False,
|
|
allow_reflection=False,
|
|
reflect=False,
|
|
random_weights=False,
|
|
):
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# initialize a ground truth point cloud
|
|
X = TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=use_pointclouds,
|
|
random_pcl_size=True,
|
|
)
|
|
|
|
# generate the true transformation
|
|
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
|
|
batch_size=batch_size,
|
|
scale=estimate_scale,
|
|
reflect=reflect,
|
|
dim=dim,
|
|
device=device,
|
|
)
|
|
|
|
# apply the generated transformation to the generated
|
|
# point cloud X
|
|
X_t = _apply_pcl_transformation(X, R, T, s=s)
|
|
|
|
weights = None
|
|
if random_weights:
|
|
template = X.points_padded() if use_pointclouds else X
|
|
weights = torch.rand_like(template[:, :, 0])
|
|
weights = weights / weights.sum(dim=1, keepdim=True)
|
|
# zero out some weights as zero weights are a common use case
|
|
# this guarantees there are no zero weight
|
|
weights *= (weights * template.size()[1] > 0.3).to(weights)
|
|
if use_pointclouds: # convert to List[Tensor]
|
|
weights = [
|
|
w[:npts]
|
|
for w, npts in zip(weights, X.num_points_per_cloud())
|
|
]
|
|
|
|
torch.cuda.synchronize()
|
|
|
|
def run_corresponding_points_alignment():
|
|
points_alignment.corresponding_points_alignment(
|
|
X,
|
|
X_t,
|
|
weights,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
torch.cuda.synchronize()
|
|
|
|
return run_corresponding_points_alignment
|
|
|
|
def test_corresponding_points_alignment(self, batch_size=10):
|
|
"""
|
|
Tests whether we can estimate a rigid/similarity motion between
|
|
a randomly initialized point cloud and its randomly transformed version.
|
|
|
|
The tests are done for all possible combinations
|
|
of the following boolean flags:
|
|
- estimate_scale ... Estimate also a scaling component of
|
|
the transformation.
|
|
- reflect ... The ground truth orthonormal part of the generated
|
|
transformation is a reflection (det==-1).
|
|
- allow_reflection ... If True, the orthonormal matrix of the
|
|
estimated transformation is allowed to be
|
|
a reflection (det==-1).
|
|
- use_pointclouds ... If True, passes the Pointclouds objects
|
|
to corresponding_points_alignment.
|
|
"""
|
|
|
|
# run this for several different point cloud sizes
|
|
for n_points in (100, 3, 2, 1):
|
|
# run this for several different dimensionalities
|
|
for dim in range(2, 10):
|
|
# switches whether we should use the Pointclouds inputs
|
|
use_point_clouds_cases = (
|
|
(True, False) if dim == 3 and n_points > 3 else (False,)
|
|
)
|
|
for random_weights in (False, True,):
|
|
for use_pointclouds in use_point_clouds_cases:
|
|
for estimate_scale in (False, True):
|
|
for reflect in (False, True):
|
|
for allow_reflection in (False, True):
|
|
self._test_single_corresponding_points_alignment(
|
|
batch_size=10,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
use_pointclouds=use_pointclouds,
|
|
estimate_scale=estimate_scale,
|
|
reflect=reflect,
|
|
allow_reflection=allow_reflection,
|
|
random_weights=random_weights,
|
|
)
|
|
|
|
def _test_single_corresponding_points_alignment(
|
|
self,
|
|
batch_size=10,
|
|
n_points=100,
|
|
dim=3,
|
|
use_pointclouds=False,
|
|
estimate_scale=False,
|
|
reflect=False,
|
|
allow_reflection=False,
|
|
random_weights=False,
|
|
):
|
|
"""
|
|
Executes a single test for `corresponding_points_alignment` for a
|
|
specific setting of the inputs / outputs.
|
|
"""
|
|
|
|
device = torch.device("cuda:0")
|
|
|
|
# initialize the a ground truth point cloud
|
|
X = TestCorrespondingPointsAlignment.init_point_cloud(
|
|
batch_size=batch_size,
|
|
n_points=n_points,
|
|
dim=dim,
|
|
device=device,
|
|
use_pointclouds=use_pointclouds,
|
|
random_pcl_size=True,
|
|
)
|
|
|
|
# generate the true transformation
|
|
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
|
|
batch_size=batch_size,
|
|
scale=estimate_scale,
|
|
reflect=reflect,
|
|
dim=dim,
|
|
device=device,
|
|
)
|
|
|
|
if reflect:
|
|
# generate random reflection M and apply to the rotations
|
|
M = TestCorrespondingPointsAlignment.generate_random_reflection(
|
|
batch_size=batch_size, dim=dim, device=device
|
|
)
|
|
R = torch.bmm(M, R)
|
|
|
|
weights = None
|
|
if random_weights:
|
|
template = X.points_padded() if use_pointclouds else X
|
|
weights = torch.rand_like(template[:, :, 0])
|
|
weights = weights / weights.sum(dim=1, keepdim=True)
|
|
# zero out some weights as zero weights are a common use case
|
|
# this guarantees there are no zero weight
|
|
weights *= (weights * template.size()[1] > 0.3).to(weights)
|
|
if use_pointclouds: # convert to List[Tensor]
|
|
weights = [
|
|
w[:npts]
|
|
for w, npts in zip(weights, X.num_points_per_cloud())
|
|
]
|
|
|
|
# apply the generated transformation to the generated
|
|
# point cloud X
|
|
X_t = _apply_pcl_transformation(X, R, T, s=s)
|
|
|
|
# run the CorrespondingPointsAlignment algorithm
|
|
R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
|
|
X,
|
|
X_t,
|
|
weights,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
|
|
assert_error_message = (
|
|
f"Corresponding_points_alignment assertion failure for "
|
|
f"n_points={n_points}, "
|
|
f"dim={dim}, "
|
|
f"use_pointclouds={use_pointclouds}, "
|
|
f"estimate_scale={estimate_scale}, "
|
|
f"reflect={reflect}, "
|
|
f"allow_reflection={allow_reflection},"
|
|
f"random_weights={random_weights}."
|
|
)
|
|
|
|
# if we test the weighted case, check that weights help with noise
|
|
if random_weights and not use_pointclouds and n_points >= (dim + 10):
|
|
# add noise to 20% points with smallest weight
|
|
X_noisy = X_t.clone()
|
|
_, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
|
|
mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
|
|
X_noisy.scatter_add_(
|
|
1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
|
|
)
|
|
|
|
def align_and_get_mse(weights_):
|
|
R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
|
|
X_noisy,
|
|
X_t,
|
|
weights_,
|
|
allow_reflection=allow_reflection,
|
|
estimate_scale=estimate_scale,
|
|
)
|
|
|
|
X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)
|
|
|
|
return (
|
|
((X_t_est - X_t) * weights[..., None]) ** 2
|
|
).sum(dim=(1, 2)) / weights.sum(dim=-1)
|
|
|
|
# check that using weights leads to lower weighted_MSE(X_noisy, X_t)
|
|
self.assertTrue(
|
|
torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
|
|
)
|
|
|
|
if reflect and not allow_reflection:
|
|
# check that all rotations have det=1
|
|
self._assert_all_close(
|
|
torch.det(R_est),
|
|
R_est.new_ones(batch_size),
|
|
assert_error_message,
|
|
)
|
|
|
|
else:
|
|
# mask out inputs with too few non-degenerate points for assertions
|
|
w = (
|
|
torch.ones_like(R_est[:, 0, 0])
|
|
if weights is None or n_points >= dim + 10
|
|
else (weights > 0.0).all(dim=1).to(R_est)
|
|
)
|
|
# check that the estimated tranformation is the same
|
|
# as the ground truth
|
|
if n_points >= (dim + 1):
|
|
# the checks on transforms apply only when
|
|
# the problem setup is unambiguous
|
|
msg = assert_error_message
|
|
self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
|
|
self._assert_all_close(T_est, T, msg, w[:, None])
|
|
self._assert_all_close(s_est, s, msg, w)
|
|
|
|
# check that the orthonormal part of the
|
|
# transformation has a correct determinant (+1/-1)
|
|
desired_det = R_est.new_ones(batch_size)
|
|
if reflect:
|
|
desired_det *= -1.0
|
|
self._assert_all_close(torch.det(R_est), desired_det, msg, w)
|
|
|
|
# check that the transformed point cloud
|
|
# X matches X_t
|
|
X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
|
|
self._assert_all_close(
|
|
X_t, X_t_est, assert_error_message, w[:, None, None], atol=1e-5
|
|
)
|
|
|
|
def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
|
|
if isinstance(a_, Pointclouds):
|
|
a_ = a_.points_packed()
|
|
if isinstance(b_, Pointclouds):
|
|
b_ = b_.points_packed()
|
|
if weights is None:
|
|
self.assertClose(a_, b_, atol=atol, msg=err_message)
|
|
else:
|
|
self.assertClose(
|
|
a_ * weights, b_ * weights, atol=atol, msg=err_message
|
|
)
|