pytorch3d/tests/test_points_alignment.py
Roman Shapovalov e37085d999 Weighted Umeyama.
Summary:
1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own.
2. Refactored to use the same code for the Pointclouds mask and passed weights.
3. Added test cases with random weights.
4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ).

Reviewed By: gkioxari

Differential Revision: D20070293

fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
2020-04-03 02:59:11 -07:00

436 lines
16 KiB
Python

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import numpy as np
import unittest
import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import points_alignment
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.transforms import rotation_conversions
def _apply_pcl_transformation(X, R, T, s=None):
"""
Apply a batch of similarity/rigid transformations, parametrized with
rotation `R`, translation `T` and scale `s`, to an input batch of
point clouds `X`.
"""
if isinstance(X, Pointclouds):
num_points = X.num_points_per_cloud()
X_t = X.points_padded()
else:
X_t = X
if s is not None:
X_t = s[:, None, None] * X_t
X_t = torch.bmm(X_t, R) + T[:, None, :]
if isinstance(X, Pointclouds):
X_list = [x[:n_p] for x, n_p in zip(X_t, num_points)]
X_t = Pointclouds(X_list)
return X_t
class TestCorrespondingPointsAlignment(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(42)
np.random.seed(42)
@staticmethod
def random_rotation(batch_size, dim, device=None):
"""
Generates a batch of random `dim`-dimensional rotation matrices.
"""
if dim == 3:
R = rotation_conversions.random_rotations(batch_size, device=device)
else:
# generate random rotation matrices with orthogonalization of
# random normal square matrices, followed by a transformation
# that ensures determinant(R)==1
H = torch.randn(
batch_size, dim, dim, dtype=torch.float32, device=device
)
U, _, V = torch.svd(H)
E = torch.eye(dim, dtype=torch.float32, device=device)[None].repeat(
batch_size, 1, 1
)
E[:, -1, -1] = torch.det(torch.bmm(U, V.transpose(2, 1)))
R = torch.bmm(torch.bmm(U, E), V.transpose(2, 1))
assert torch.allclose(
torch.det(R), R.new_ones(batch_size), atol=1e-4
)
return R
@staticmethod
def init_point_cloud(
batch_size=10,
n_points=1000,
dim=3,
device=None,
use_pointclouds=False,
random_pcl_size=True,
):
"""
Generate a batch of normally distributed point clouds.
"""
if use_pointclouds:
assert dim == 3, "Pointclouds support only 3-dim points."
# generate a `batch_size` point clouds with number of points
# between 4 and `n_points`
if random_pcl_size:
n_points_per_batch = torch.randint(
low=4,
high=n_points,
size=(batch_size,),
device=device,
dtype=torch.int64,
)
X_list = [
torch.randn(
int(n_pt), dim, device=device, dtype=torch.float32
)
for n_pt in n_points_per_batch
]
X = Pointclouds(X_list)
else:
X = torch.randn(
batch_size,
n_points,
dim,
device=device,
dtype=torch.float32,
)
X = Pointclouds(list(X))
else:
X = torch.randn(
batch_size, n_points, dim, device=device, dtype=torch.float32
)
return X
@staticmethod
def generate_pcl_transformation(
batch_size=10, scale=False, reflect=False, dim=3, device=None
):
"""
Generate a batch of random rigid/similarity transformations.
"""
R = TestCorrespondingPointsAlignment.random_rotation(
batch_size, dim, device=device
)
T = torch.randn(batch_size, dim, dtype=torch.float32, device=device)
if scale:
s = torch.rand(batch_size, dtype=torch.float32, device=device) + 0.1
else:
s = torch.ones(batch_size, dtype=torch.float32, device=device)
return R, T, s
@staticmethod
def generate_random_reflection(batch_size=10, dim=3, device=None):
"""
Generate a batch of reflection matrices of shape (batch_size, dim, dim),
where M_i is an identity matrix with one random entry on the
diagonal equal to -1.
"""
# randomly select one of the dimensions to reflect for each
# element in the batch
dim_to_reflect = torch.randint(
low=0,
high=dim,
size=(batch_size,),
device=device,
dtype=torch.int64,
)
# convert dim_to_reflect to a batch of reflection matrices M
M = torch.diag_embed(
(
dim_to_reflect[:, None]
!= torch.arange(dim, device=device, dtype=torch.float32)
).float()
* 2
- 1,
dim1=1,
dim2=2,
)
return M
@staticmethod
def corresponding_points_alignment(
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
allow_reflection=False,
reflect=False,
random_weights=False,
):
device = torch.device("cuda:0")
# initialize a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
weights = None
if random_weights:
template = X.points_padded() if use_pointclouds else X
weights = torch.rand_like(template[:, :, 0])
weights = weights / weights.sum(dim=1, keepdim=True)
# zero out some weights as zero weights are a common use case
# this guarantees there are no zero weight
weights *= (weights * template.size()[1] > 0.3).to(weights)
if use_pointclouds: # convert to List[Tensor]
weights = [
w[:npts]
for w, npts in zip(weights, X.num_points_per_cloud())
]
torch.cuda.synchronize()
def run_corresponding_points_alignment():
points_alignment.corresponding_points_alignment(
X,
X_t,
weights,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
torch.cuda.synchronize()
return run_corresponding_points_alignment
def test_corresponding_points_alignment(self, batch_size=10):
"""
Tests whether we can estimate a rigid/similarity motion between
a randomly initialized point cloud and its randomly transformed version.
The tests are done for all possible combinations
of the following boolean flags:
- estimate_scale ... Estimate also a scaling component of
the transformation.
- reflect ... The ground truth orthonormal part of the generated
transformation is a reflection (det==-1).
- allow_reflection ... If True, the orthonormal matrix of the
estimated transformation is allowed to be
a reflection (det==-1).
- use_pointclouds ... If True, passes the Pointclouds objects
to corresponding_points_alignment.
"""
# run this for several different point cloud sizes
for n_points in (100, 3, 2, 1):
# run this for several different dimensionalities
for dim in range(2, 10):
# switches whether we should use the Pointclouds inputs
use_point_clouds_cases = (
(True, False) if dim == 3 and n_points > 3 else (False,)
)
for random_weights in (False, True,):
for use_pointclouds in use_point_clouds_cases:
for estimate_scale in (False, True):
for reflect in (False, True):
for allow_reflection in (False, True):
self._test_single_corresponding_points_alignment(
batch_size=10,
n_points=n_points,
dim=dim,
use_pointclouds=use_pointclouds,
estimate_scale=estimate_scale,
reflect=reflect,
allow_reflection=allow_reflection,
random_weights=random_weights,
)
def _test_single_corresponding_points_alignment(
self,
batch_size=10,
n_points=100,
dim=3,
use_pointclouds=False,
estimate_scale=False,
reflect=False,
allow_reflection=False,
random_weights=False,
):
"""
Executes a single test for `corresponding_points_alignment` for a
specific setting of the inputs / outputs.
"""
device = torch.device("cuda:0")
# initialize the a ground truth point cloud
X = TestCorrespondingPointsAlignment.init_point_cloud(
batch_size=batch_size,
n_points=n_points,
dim=dim,
device=device,
use_pointclouds=use_pointclouds,
random_pcl_size=True,
)
# generate the true transformation
R, T, s = TestCorrespondingPointsAlignment.generate_pcl_transformation(
batch_size=batch_size,
scale=estimate_scale,
reflect=reflect,
dim=dim,
device=device,
)
if reflect:
# generate random reflection M and apply to the rotations
M = TestCorrespondingPointsAlignment.generate_random_reflection(
batch_size=batch_size, dim=dim, device=device
)
R = torch.bmm(M, R)
weights = None
if random_weights:
template = X.points_padded() if use_pointclouds else X
weights = torch.rand_like(template[:, :, 0])
weights = weights / weights.sum(dim=1, keepdim=True)
# zero out some weights as zero weights are a common use case
# this guarantees there are no zero weight
weights *= (weights * template.size()[1] > 0.3).to(weights)
if use_pointclouds: # convert to List[Tensor]
weights = [
w[:npts]
for w, npts in zip(weights, X.num_points_per_cloud())
]
# apply the generated transformation to the generated
# point cloud X
X_t = _apply_pcl_transformation(X, R, T, s=s)
# run the CorrespondingPointsAlignment algorithm
R_est, T_est, s_est = points_alignment.corresponding_points_alignment(
X,
X_t,
weights,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
assert_error_message = (
f"Corresponding_points_alignment assertion failure for "
f"n_points={n_points}, "
f"dim={dim}, "
f"use_pointclouds={use_pointclouds}, "
f"estimate_scale={estimate_scale}, "
f"reflect={reflect}, "
f"allow_reflection={allow_reflection},"
f"random_weights={random_weights}."
)
# if we test the weighted case, check that weights help with noise
if random_weights and not use_pointclouds and n_points >= (dim + 10):
# add noise to 20% points with smallest weight
X_noisy = X_t.clone()
_, mink_idx = torch.topk(-weights, int(n_points * 0.2), dim=1)
mink_idx = mink_idx[:, :, None].expand(-1, -1, X_t.shape[-1])
X_noisy.scatter_add_(
1, mink_idx, 0.3 * torch.randn_like(mink_idx, dtype=X_t.dtype)
)
def align_and_get_mse(weights_):
R_n, T_n, s_n = points_alignment.corresponding_points_alignment(
X_noisy,
X_t,
weights_,
allow_reflection=allow_reflection,
estimate_scale=estimate_scale,
)
X_t_est = _apply_pcl_transformation(X_noisy, R_n, T_n, s=s_n)
return (
((X_t_est - X_t) * weights[..., None]) ** 2
).sum(dim=(1, 2)) / weights.sum(dim=-1)
# check that using weights leads to lower weighted_MSE(X_noisy, X_t)
self.assertTrue(
torch.all(align_and_get_mse(weights) <= align_and_get_mse(None))
)
if reflect and not allow_reflection:
# check that all rotations have det=1
self._assert_all_close(
torch.det(R_est),
R_est.new_ones(batch_size),
assert_error_message,
)
else:
# mask out inputs with too few non-degenerate points for assertions
w = (
torch.ones_like(R_est[:, 0, 0])
if weights is None or n_points >= dim + 10
else (weights > 0.0).all(dim=1).to(R_est)
)
# check that the estimated tranformation is the same
# as the ground truth
if n_points >= (dim + 1):
# the checks on transforms apply only when
# the problem setup is unambiguous
msg = assert_error_message
self._assert_all_close(R_est, R, msg, w[:, None, None], atol=1e-5)
self._assert_all_close(T_est, T, msg, w[:, None])
self._assert_all_close(s_est, s, msg, w)
# check that the orthonormal part of the
# transformation has a correct determinant (+1/-1)
desired_det = R_est.new_ones(batch_size)
if reflect:
desired_det *= -1.0
self._assert_all_close(torch.det(R_est), desired_det, msg, w)
# check that the transformed point cloud
# X matches X_t
X_t_est = _apply_pcl_transformation(X, R_est, T_est, s=s_est)
self._assert_all_close(
X_t, X_t_est, assert_error_message, w[:, None, None], atol=1e-5
)
def _assert_all_close(self, a_, b_, err_message, weights=None, atol=1e-6):
if isinstance(a_, Pointclouds):
a_ = a_.points_packed()
if isinstance(b_, Pointclouds):
b_ = b_.points_packed()
if weights is None:
self.assertClose(a_, b_, atol=atol, msg=err_message)
else:
self.assertClose(
a_ * weights, b_ * weights, atol=atol, msg=err_message
)