pytorch3d/tests/test_sample_farthest_points.py
Nikhila Ravi 3b7d78c7a7 Farthest point sampling python naive
Summary:
This is a naive python implementation of the iterative farthest point sampling algorithm along with associated simple tests. The C++/CUDA implementations will follow in subsequent diffs.

The algorithm is used to subsample a pointcloud with better coverage of the space of the pointcloud.

The function has not been added to `__init__.py`. I will add this after the full C++/CUDA implementations.

Reviewed By: jcjohnson

Differential Revision: D30285716

fbshipit-source-id: 33f4181041fc652776406bcfd67800a6f0c3dd58
2021-09-15 13:49:21 -07:00

112 lines
4.5 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from common_testing import TestCaseMixin, get_random_cuda_device
from pytorch3d.ops.sample_farthest_points import sample_farthest_points_naive
from pytorch3d.ops.utils import masked_gather
class TestFPS(TestCaseMixin, unittest.TestCase):
def test_simple(self):
device = get_random_cuda_device()
# fmt: off
points = torch.tensor(
[
[
[-1.0, -1.0], # noqa: E241, E201
[-1.3, 1.1], # noqa: E241, E201
[ 0.2, -1.1], # noqa: E241, E201
[ 0.0, 0.0], # noqa: E241, E201
[ 1.3, 1.3], # noqa: E241, E201
[ 1.0, 0.5], # noqa: E241, E201
[-1.3, 0.2], # noqa: E241, E201
[ 1.5, -0.5], # noqa: E241, E201
],
[
[-2.2, -2.4], # noqa: E241, E201
[-2.1, 2.0], # noqa: E241, E201
[ 2.2, 2.1], # noqa: E241, E201
[ 2.1, -2.4], # noqa: E241, E201
[ 0.4, -1.0], # noqa: E241, E201
[ 0.3, 0.3], # noqa: E241, E201
[ 1.2, 0.5], # noqa: E241, E201
[ 4.5, 4.5], # noqa: E241, E201
],
],
dtype=torch.float32,
device=device,
)
# fmt: on
expected_inds = torch.tensor([[0, 4], [0, 7]], dtype=torch.int64, device=device)
out_points, out_inds = sample_farthest_points_naive(points, K=2)
self.assertClose(out_inds, expected_inds)
# Gather the points
expected_inds = expected_inds[..., None].expand(-1, -1, points.shape[-1])
self.assertClose(out_points, points.gather(dim=1, index=expected_inds))
# Different number of points sampled for each pointcloud in the batch
expected_inds = torch.tensor(
[[0, 4, 1], [0, 7, -1]], dtype=torch.int64, device=device
)
out_points, out_inds = sample_farthest_points_naive(points, K=[3, 2])
self.assertClose(out_inds, expected_inds)
# Gather the points
expected_points = masked_gather(points, expected_inds)
self.assertClose(out_points, expected_points)
def test_random_heterogeneous(self):
device = get_random_cuda_device()
N, P, D, K = 5, 40, 5, 8
points = torch.randn((N, P, D), device=device)
out_points, out_idxs = sample_farthest_points_naive(points, K=K)
self.assertTrue(out_idxs.min() >= 0)
for n in range(N):
self.assertEqual(out_idxs[n].ne(-1).sum(), K)
lengths = torch.randint(low=1, high=P, size=(N,), device=device)
out_points, out_idxs = sample_farthest_points_naive(points, lengths, K=50)
for n in range(N):
# Check that for heterogeneous batches, the max number of
# selected points is less than the length
self.assertTrue(out_idxs[n].ne(-1).sum() <= lengths[n])
self.assertTrue(out_idxs[n].max() <= lengths[n])
# Check there are no duplicate indices
val_mask = out_idxs[n].ne(-1)
vals, counts = torch.unique(out_idxs[n][val_mask], return_counts=True)
self.assertTrue(counts.le(1).all())
def test_errors(self):
device = get_random_cuda_device()
N, P, D, K = 5, 40, 5, 8
points = torch.randn((N, P, D), device=device)
wrong_batch_dim = torch.randint(low=1, high=K, size=(K,), device=device)
# K has diferent batch dimension to points
with self.assertRaisesRegex(ValueError, "K and points must have"):
sample_farthest_points_naive(points, K=wrong_batch_dim)
# lengths has diferent batch dimension to points
with self.assertRaisesRegex(ValueError, "points and lengths must have"):
sample_farthest_points_naive(points, lengths=wrong_batch_dim, K=K)
def test_random_start(self):
device = get_random_cuda_device()
N, P, D, K = 5, 40, 5, 8
points = torch.randn((N, P, D), device=device)
out_points, out_idxs = sample_farthest_points_naive(
points, K=K, random_start_point=True
)
# Check the first index is not 0 for all batch elements
# when random_start_point = True
self.assertTrue(out_idxs[:, 0].sum() > 0)