mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Summary: This is a naive python implementation of the iterative farthest point sampling algorithm along with associated simple tests. The C++/CUDA implementations will follow in subsequent diffs. The algorithm is used to subsample a pointcloud with better coverage of the space of the pointcloud. The function has not been added to `__init__.py`. I will add this after the full C++/CUDA implementations. Reviewed By: jcjohnson Differential Revision: D30285716 fbshipit-source-id: 33f4181041fc652776406bcfd67800a6f0c3dd58
112 lines
4.5 KiB
Python
112 lines
4.5 KiB
Python
# Copyright (c) Facebook, Inc. and its affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
from common_testing import TestCaseMixin, get_random_cuda_device
|
|
from pytorch3d.ops.sample_farthest_points import sample_farthest_points_naive
|
|
from pytorch3d.ops.utils import masked_gather
|
|
|
|
|
|
class TestFPS(TestCaseMixin, unittest.TestCase):
|
|
def test_simple(self):
|
|
device = get_random_cuda_device()
|
|
# fmt: off
|
|
points = torch.tensor(
|
|
[
|
|
[
|
|
[-1.0, -1.0], # noqa: E241, E201
|
|
[-1.3, 1.1], # noqa: E241, E201
|
|
[ 0.2, -1.1], # noqa: E241, E201
|
|
[ 0.0, 0.0], # noqa: E241, E201
|
|
[ 1.3, 1.3], # noqa: E241, E201
|
|
[ 1.0, 0.5], # noqa: E241, E201
|
|
[-1.3, 0.2], # noqa: E241, E201
|
|
[ 1.5, -0.5], # noqa: E241, E201
|
|
],
|
|
[
|
|
[-2.2, -2.4], # noqa: E241, E201
|
|
[-2.1, 2.0], # noqa: E241, E201
|
|
[ 2.2, 2.1], # noqa: E241, E201
|
|
[ 2.1, -2.4], # noqa: E241, E201
|
|
[ 0.4, -1.0], # noqa: E241, E201
|
|
[ 0.3, 0.3], # noqa: E241, E201
|
|
[ 1.2, 0.5], # noqa: E241, E201
|
|
[ 4.5, 4.5], # noqa: E241, E201
|
|
],
|
|
],
|
|
dtype=torch.float32,
|
|
device=device,
|
|
)
|
|
# fmt: on
|
|
expected_inds = torch.tensor([[0, 4], [0, 7]], dtype=torch.int64, device=device)
|
|
out_points, out_inds = sample_farthest_points_naive(points, K=2)
|
|
self.assertClose(out_inds, expected_inds)
|
|
|
|
# Gather the points
|
|
expected_inds = expected_inds[..., None].expand(-1, -1, points.shape[-1])
|
|
self.assertClose(out_points, points.gather(dim=1, index=expected_inds))
|
|
|
|
# Different number of points sampled for each pointcloud in the batch
|
|
expected_inds = torch.tensor(
|
|
[[0, 4, 1], [0, 7, -1]], dtype=torch.int64, device=device
|
|
)
|
|
out_points, out_inds = sample_farthest_points_naive(points, K=[3, 2])
|
|
self.assertClose(out_inds, expected_inds)
|
|
|
|
# Gather the points
|
|
expected_points = masked_gather(points, expected_inds)
|
|
self.assertClose(out_points, expected_points)
|
|
|
|
def test_random_heterogeneous(self):
|
|
device = get_random_cuda_device()
|
|
N, P, D, K = 5, 40, 5, 8
|
|
points = torch.randn((N, P, D), device=device)
|
|
out_points, out_idxs = sample_farthest_points_naive(points, K=K)
|
|
self.assertTrue(out_idxs.min() >= 0)
|
|
for n in range(N):
|
|
self.assertEqual(out_idxs[n].ne(-1).sum(), K)
|
|
|
|
lengths = torch.randint(low=1, high=P, size=(N,), device=device)
|
|
out_points, out_idxs = sample_farthest_points_naive(points, lengths, K=50)
|
|
|
|
for n in range(N):
|
|
# Check that for heterogeneous batches, the max number of
|
|
# selected points is less than the length
|
|
self.assertTrue(out_idxs[n].ne(-1).sum() <= lengths[n])
|
|
self.assertTrue(out_idxs[n].max() <= lengths[n])
|
|
|
|
# Check there are no duplicate indices
|
|
val_mask = out_idxs[n].ne(-1)
|
|
vals, counts = torch.unique(out_idxs[n][val_mask], return_counts=True)
|
|
self.assertTrue(counts.le(1).all())
|
|
|
|
def test_errors(self):
|
|
device = get_random_cuda_device()
|
|
N, P, D, K = 5, 40, 5, 8
|
|
points = torch.randn((N, P, D), device=device)
|
|
wrong_batch_dim = torch.randint(low=1, high=K, size=(K,), device=device)
|
|
|
|
# K has diferent batch dimension to points
|
|
with self.assertRaisesRegex(ValueError, "K and points must have"):
|
|
sample_farthest_points_naive(points, K=wrong_batch_dim)
|
|
|
|
# lengths has diferent batch dimension to points
|
|
with self.assertRaisesRegex(ValueError, "points and lengths must have"):
|
|
sample_farthest_points_naive(points, lengths=wrong_batch_dim, K=K)
|
|
|
|
def test_random_start(self):
|
|
device = get_random_cuda_device()
|
|
N, P, D, K = 5, 40, 5, 8
|
|
points = torch.randn((N, P, D), device=device)
|
|
out_points, out_idxs = sample_farthest_points_naive(
|
|
points, K=K, random_start_point=True
|
|
)
|
|
# Check the first index is not 0 for all batch elements
|
|
# when random_start_point = True
|
|
self.assertTrue(out_idxs[:, 0].sum() > 0)
|