pytorch3d/tests/test_shader.py
Krzysztof Chalupka 36edf2b302 Add .to methods to the splatter and SplatterPhongShader.
Summary: Needed to properly change devices during OpenGL rasterization.

Reviewed By: jcjohnson

Differential Revision: D37698568

fbshipit-source-id: 38968149d577322e662d3b5d04880204b0a7be29
2022-07-22 14:36:22 -07:00

126 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
import torch
from pytorch3d.renderer.cameras import look_at_view_transform, PerspectiveCameras
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.renderer.mesh.shader import (
HardDepthShader,
HardFlatShader,
HardGouraudShader,
HardPhongShader,
SoftDepthShader,
SoftPhongShader,
SplatterPhongShader,
)
from pytorch3d.structures.meshes import Meshes
from .common_testing import TestCaseMixin
class TestShader(TestCaseMixin, unittest.TestCase):
def setUp(self):
self.shader_classes = [
HardDepthShader,
HardFlatShader,
HardGouraudShader,
HardPhongShader,
SoftDepthShader,
SoftPhongShader,
SplatterPhongShader,
]
def test_to(self):
cpu_device = torch.device("cpu")
cuda_device = torch.device("cuda:0")
R, T = look_at_view_transform()
for shader_class in self.shader_classes:
for cameras_class in (None, PerspectiveCameras):
if cameras_class is None:
cameras = None
else:
cameras = PerspectiveCameras(device=cpu_device, R=R, T=T)
cpu_shader = shader_class(device=cpu_device, cameras=cameras)
if cameras is None:
self.assertIsNone(cpu_shader.cameras)
else:
self.assertEqual(cpu_device, cpu_shader.cameras.device)
self.assertEqual(cpu_device, cpu_shader.materials.device)
self.assertEqual(cpu_device, cpu_shader.lights.device)
cuda_shader = cpu_shader.to(cuda_device)
self.assertIs(cpu_shader, cuda_shader)
if cameras is None:
self.assertIsNone(cuda_shader.cameras)
with self.assertRaisesRegex(ValueError, "Cameras must be"):
cuda_shader._get_cameras()
else:
self.assertEqual(cuda_device, cuda_shader.cameras.device)
self.assertIsInstance(cuda_shader._get_cameras(), cameras_class)
self.assertEqual(cuda_device, cuda_shader.materials.device)
self.assertEqual(cuda_device, cuda_shader.lights.device)
def test_cameras_check(self):
verts = torch.tensor(
[[-1, -1, 0], [1, -1, 1], [1, 1, 0], [-1, 1, 1]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [2, 3, 0]], dtype=torch.int64)
meshes = Meshes(verts=[verts], faces=[faces])
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.1, 0.2, 0.7], [0.3, 0.5, 0.2]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=barycentric_coords,
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
for shader_class in self.shader_classes:
shader = shader_class()
with self.assertRaises(ValueError):
shader(fragments, meshes)
def test_depth_shader(self):
shader_classes = [
HardDepthShader,
SoftDepthShader,
]
verts = torch.tensor(
[[-1, -1, 0], [1, -1, 1], [1, 1, 0], [-1, 1, 1]], dtype=torch.float32
)
faces = torch.tensor([[0, 1, 2], [2, 3, 0]], dtype=torch.int64)
meshes = Meshes(verts=[verts], faces=[faces])
pix_to_face = torch.tensor([0, 1], dtype=torch.int64).view(1, 1, 1, 2)
barycentric_coords = torch.tensor(
[[0.1, 0.2, 0.7], [0.3, 0.5, 0.2]], dtype=torch.float32
).view(1, 1, 1, 2, -1)
for faces_per_pixel in [1, 2]:
fragments = Fragments(
pix_to_face=pix_to_face[:, :, :, :faces_per_pixel],
bary_coords=barycentric_coords[:, :, :, :faces_per_pixel],
zbuf=torch.ones_like(pix_to_face),
dists=torch.ones_like(pix_to_face),
)
R, T = look_at_view_transform()
cameras = PerspectiveCameras(R=R, T=T)
for shader_class in shader_classes:
shader = shader_class()
out = shader(fragments, meshes, cameras=cameras)
self.assertEqual(out.shape, (1, 1, 1, 1))