12 Commits

Author SHA1 Message Date
Jeremy Reizenstein
232e4a7e3d Driver update for ci, easier diagnosing
Summary: Bump the nvidia driver used in the conda tests. Add an environment variable (unused) to allow building without ninja. Print relative error on assertClose failure.

Reviewed By: nikhilaravi

Differential Revision: D21227373

fbshipit-source-id: 5dd8eb097151da27d3632daa755a1e7b9ac97845
2020-04-25 16:03:42 -07:00
Nikhila Ravi
cf84dacf2e fix get cuda device test error
Summary:
Cuda test failing on circle with the error `random_ expects 'from' to be less than 'to', but got from=0 >= to=0`

This is because the `high` value in `torch.randint` is 1 more than the highest value in the distribution from which a value is drawn. So if there is only 1 cuda device available then the low and high are 0.

Reviewed By: gkioxari

Differential Revision: D21236669

fbshipit-source-id: 46c312d431c474f1f2c50747b1d5e7afbd7df3a9
2020-04-24 16:12:49 -07:00
Nikhila Ravi
c3d636dc8c Cuda updates
Summary:
Updates to:
- enable cuda kernel launches on any GPU (not just the default)
- cuda and contiguous checks for all kernels
- checks to ensure all tensors are on the same device
- error reporting in the cuda kernels
- cuda tests now run on a random device not just the default

Reviewed By: jcjohnson, gkioxari

Differential Revision: D21215280

fbshipit-source-id: 1bedc9fe6c35e9e920bdc4d78ed12865b1005519
2020-04-24 09:11:04 -07:00
Jeremy Reizenstein
9e4bd2e5e0 chamfer test consistency
Summary:
Modify test_chamfer for more robustness. Avoid empty pointclouds, including where point_reduction is mean, for which we currently return nan (*), and so that we aren't looking at an empty gradient. Make sure we aren't using padding as points in the homogenous cases in the tests, which will lead to a tie between closest points and therefore a potential instability in the gradient - see https://github.com/pytorch/pytorch/issues/35699.

(*) This doesn't attempt to fix the nan.

Reviewed By: nikhilaravi, gkioxari

Differential Revision: D21157322

fbshipit-source-id: a609e84e25a24379c8928ff645d587552526e4af
2020-04-22 09:28:51 -07:00
Nikhila Ravi
9ef1ee8455 coarse rasterization bug fix
Summary:
Fix a bug which resulted in a rendering artifacts if the image size was not a multiple of 16.
Fix: Revert coarse rasterization to original implementation and only update fine rasterization to reverse the ordering of Y and X axis. This is much simpler than the previous approach!

Additional changes:
- updated mesh rendering end-end tests to check outputs from both naive and coarse to fine rasterization.
- added pointcloud rendering end-end tests

Reviewed By: gkioxari

Differential Revision: D21102725

fbshipit-source-id: 2e7e1b013dd6dd12b3a00b79eb8167deddb2e89a
2020-04-20 14:54:16 -07:00
Roman Shapovalov
04d8bf6a43 Efficient PnP.
Summary:
Efficient PnP algorithm to fit 2D to 3D correspondences under perspective assumption.

Benchmarked both variants of nullspace and pick one; SVD takes 7 times longer in the 100K points case.

Reviewed By: davnov134, gkioxari

Differential Revision: D20095754

fbshipit-source-id: 2b4519729630e6373820880272f674829eaed073
2020-04-17 07:44:16 -07:00
Jeremy Reizenstein
b87058c62a fix recent lint
Summary: lint clean again

Reviewed By: patricklabatut

Differential Revision: D20868775

fbshipit-source-id: ade4301c1012c5c6943186432465215701d635a9
2020-04-06 06:41:00 -07:00
Roman Shapovalov
e37085d999 Weighted Umeyama.
Summary:
1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own.
2. Refactored to use the same code for the Pointclouds mask and passed weights.
3. Added test cases with random weights.
4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ).

Reviewed By: gkioxari

Differential Revision: D20070293

fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
2020-04-03 02:59:11 -07:00
Patrick Labatut
d57daa6f85 Address black + isort fbsource linter warnings
Summary: Address black + isort fbsource linter warnings from D20558374 (previous diff)

Reviewed By: nikhilaravi

Differential Revision: D20558373

fbshipit-source-id: d3607de4a01fb24c0d5269634563a7914bddf1c8
2020-03-29 14:51:02 -07:00
Patrick Labatut
3c71ab64cc Remove shebang line when not strictly required
Summary: The shebang line `#!<path to interpreter>` is only required for Python scripts, so remove it on source files for class or function definitions. Additionally explicitly mark as executable the actual Python scripts in the codebase.

Reviewed By: nikhilaravi

Differential Revision: D20095778

fbshipit-source-id: d312599fba485e978a243292f88a180d71e1b55a
2020-03-12 10:39:44 -07:00
Georgia Gkioxari
767d68a3af pointcloud structure
Summary:
Revisions to Poincloud data structure with added normals

The biggest changes form the previous version include:
a) If the user provides tensor inputs, we make no assumption about padding. Padding is only for internal use for us to convert from list to padded
b) If features are not provided or if the poincloud is empty, all forms of features are None. This is so that we don't waste memory on holding dummy tensors.

Reviewed By: nikhilaravi

Differential Revision: D19791851

fbshipit-source-id: 7e182f7bb14395cb966531653f6dd6b328fd999c
2020-03-04 13:16:43 -08:00
facebook-github-bot
dbf06b504b Initial commit
fbshipit-source-id: ad58e416e3ceeca85fae0583308968d04e78fe0d
2020-01-23 11:53:46 -08:00