mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
|
|
|
|
import numpy as np
|
|
import unittest
|
|
import torch
|
|
|
|
|
|
class TestCaseMixin(unittest.TestCase):
|
|
def assertSeparate(self, tensor1, tensor2) -> None:
|
|
"""
|
|
Verify that tensor1 and tensor2 have their data in distinct locations.
|
|
"""
|
|
self.assertNotEqual(
|
|
tensor1.storage().data_ptr(), tensor2.storage().data_ptr()
|
|
)
|
|
|
|
def assertAllSeparate(self, tensor_list) -> None:
|
|
"""
|
|
Verify that all tensors in tensor_list have their data in
|
|
distinct locations.
|
|
"""
|
|
ptrs = [i.storage().data_ptr() for i in tensor_list]
|
|
self.assertCountEqual(ptrs, set(ptrs))
|
|
|
|
def assertClose(
|
|
self,
|
|
input,
|
|
other,
|
|
*,
|
|
rtol: float = 1e-05,
|
|
atol: float = 1e-08,
|
|
equal_nan: bool = False
|
|
) -> None:
|
|
"""
|
|
Verify that two tensors or arrays are the same shape and close.
|
|
Args:
|
|
input, other: two tensors or two arrays.
|
|
rtol, atol, equal_nan: as for torch.allclose.
|
|
Note:
|
|
Optional arguments here are all keyword-only, to avoid confusion
|
|
with msg arguments on other assert functions.
|
|
"""
|
|
|
|
self.assertEqual(np.shape(input), np.shape(other))
|
|
|
|
if torch.is_tensor(input):
|
|
close = torch.allclose(
|
|
input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
|
|
)
|
|
else:
|
|
close = np.allclose(
|
|
input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
|
|
)
|
|
self.assertTrue(close)
|