Patrick Labatut
af93f34834
License lint codebase
...
Summary: License lint codebase
Reviewed By: theschnitz
Differential Revision: D29001799
fbshipit-source-id: 5c59869911785b0181b1663bbf430bc8b7fb2909
2021-06-22 03:45:27 -07:00
Christoph Lassner
b19fe1de2f
pulsar integration.
...
Summary:
This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code.
For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484 ). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`.
Tasks addressed in the following diffs:
* Add the PyTorch3D interface,
* Add notebook examples and documentation (or adapt the existing ones to feature both interfaces).
Reviewed By: nikhilaravi
Differential Revision: D23947736
fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
2020-11-03 13:06:35 -08:00
Nikhila Ravi
ebe2693b11
Support variable size radius for points in rasterizer
...
Summary:
Support variable size pointclouds in the renderer API to allow compatibility with Pulsar rasterizer.
If radius is provided as a float, it is converted to a tensor of shape (P). Otherwise radius is expected to be an (N, P_padded) dimensional tensor where P_padded is the max number of points in the batch (following the convention from pulsar: https://our.intern.facebook.com/intern/diffusion/FBS/browse/master/fbcode/frl/gemini/pulsar/pulsar/renderer.py?commit=ee0342850210e5df441e14fd97162675c70d147c&lines=50 )
Reviewed By: jcjohnson, gkioxari
Differential Revision: D21429400
fbshipit-source-id: 65de7d9cd2472b27fc29f96160c33687e88098a2
2020-09-18 18:48:18 -07:00
David Novotny
316b77782e
Camera alignment
...
Summary:
adds `corresponding_cameras_alignment` function that estimates a similarity transformation between two sets of cameras.
The function is essential for computing camera errors in SfM pipelines.
```
Benchmark Avg Time(μs) Peak Time(μs) Iterations
--------------------------------------------------------------------------------
CORRESPONDING_CAMERAS_ALIGNMENT_10_centers_False 32219 36211 16
CORRESPONDING_CAMERAS_ALIGNMENT_10_centers_True 32429 36063 16
CORRESPONDING_CAMERAS_ALIGNMENT_10_extrinsics_False 5548 8782 91
CORRESPONDING_CAMERAS_ALIGNMENT_10_extrinsics_True 6153 9752 82
CORRESPONDING_CAMERAS_ALIGNMENT_100_centers_False 33344 40398 16
CORRESPONDING_CAMERAS_ALIGNMENT_100_centers_True 34528 37095 15
CORRESPONDING_CAMERAS_ALIGNMENT_100_extrinsics_False 5576 7187 90
CORRESPONDING_CAMERAS_ALIGNMENT_100_extrinsics_True 6256 9166 80
CORRESPONDING_CAMERAS_ALIGNMENT_1000_centers_False 32020 37247 16
CORRESPONDING_CAMERAS_ALIGNMENT_1000_centers_True 32776 37644 16
CORRESPONDING_CAMERAS_ALIGNMENT_1000_extrinsics_False 5336 8795 94
CORRESPONDING_CAMERAS_ALIGNMENT_1000_extrinsics_True 6266 9929 80
--------------------------------------------------------------------------------
```
Reviewed By: shapovalov
Differential Revision: D22946415
fbshipit-source-id: 8caae7ee365b304d8aa1f8133cf0dd92c35bc0dd
2020-09-03 13:27:14 -07:00