pytorch3d/tests/bm_cameras_alignment.py
David Novotny 316b77782e Camera alignment
Summary:
adds `corresponding_cameras_alignment` function that estimates a similarity transformation between two sets of cameras.

The function is essential for computing camera errors in SfM pipelines.

```
Benchmark                                                   Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
CORRESPONDING_CAMERAS_ALIGNMENT_10_centers_False                32219           36211             16
CORRESPONDING_CAMERAS_ALIGNMENT_10_centers_True                 32429           36063             16
CORRESPONDING_CAMERAS_ALIGNMENT_10_extrinsics_False              5548            8782             91
CORRESPONDING_CAMERAS_ALIGNMENT_10_extrinsics_True               6153            9752             82
CORRESPONDING_CAMERAS_ALIGNMENT_100_centers_False               33344           40398             16
CORRESPONDING_CAMERAS_ALIGNMENT_100_centers_True                34528           37095             15
CORRESPONDING_CAMERAS_ALIGNMENT_100_extrinsics_False             5576            7187             90
CORRESPONDING_CAMERAS_ALIGNMENT_100_extrinsics_True              6256            9166             80
CORRESPONDING_CAMERAS_ALIGNMENT_1000_centers_False              32020           37247             16
CORRESPONDING_CAMERAS_ALIGNMENT_1000_centers_True               32776           37644             16
CORRESPONDING_CAMERAS_ALIGNMENT_1000_extrinsics_False            5336            8795             94
CORRESPONDING_CAMERAS_ALIGNMENT_1000_extrinsics_True             6266            9929             80
--------------------------------------------------------------------------------
```

Reviewed By: shapovalov

Differential Revision: D22946415

fbshipit-source-id: 8caae7ee365b304d8aa1f8133cf0dd92c35bc0dd
2020-09-03 13:27:14 -07:00

24 lines
683 B
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import itertools
from fvcore.common.benchmark import benchmark
from test_cameras_alignment import TestCamerasAlignment
def bm_cameras_alignment() -> None:
case_grid = {
"batch_size": [10, 100, 1000],
"mode": ["centers", "extrinsics"],
"estimate_scale": [False, True],
}
test_cases = itertools.product(*case_grid.values())
kwargs_list = [dict(zip(case_grid.keys(), case)) for case in test_cases]
benchmark(
TestCamerasAlignment.corresponding_cameras_alignment,
"CORRESPONDING_CAMERAS_ALIGNMENT",
kwargs_list,
warmup_iters=1,
)