Summary:
1. Introduced weights to Umeyama implementation. This will be needed for weighted ePnP but is useful on its own.
2. Refactored to use the same code for the Pointclouds mask and passed weights.
3. Added test cases with random weights.
4. Fixed a bug in tests that calls the function with 0 points (fails randomly in Pytorch 1.3, will be fixed in the next release: https://github.com/pytorch/pytorch/issues/31421 ).
Reviewed By: gkioxari
Differential Revision: D20070293
fbshipit-source-id: e9f549507ef6dcaa0688a0f17342e6d7a9a4336c
Summary: The shebang line `#!<path to interpreter>` is only required for Python scripts, so remove it on source files for class or function definitions. Additionally explicitly mark as executable the actual Python scripts in the codebase.
Reviewed By: nikhilaravi
Differential Revision: D20095778
fbshipit-source-id: d312599fba485e978a243292f88a180d71e1b55a
Summary:
Revisions to Poincloud data structure with added normals
The biggest changes form the previous version include:
a) If the user provides tensor inputs, we make no assumption about padding. Padding is only for internal use for us to convert from list to padded
b) If features are not provided or if the poincloud is empty, all forms of features are None. This is so that we don't waste memory on holding dummy tensors.
Reviewed By: nikhilaravi
Differential Revision: D19791851
fbshipit-source-id: 7e182f7bb14395cb966531653f6dd6b328fd999c