639 Commits

Author SHA1 Message Date
Nikhila Ravi
2f2466f472 Update eps for coplanar check in 3D IoU
Summary: Make eps=1e-4 by default for coplanar check and also enable it to be set by the user in call to `box3d_overlap`.

Reviewed By: gkioxari

Differential Revision: D31596836

fbshipit-source-id: b57fe603fd136cfa58fddf836922706d44fe894e
2021-10-13 13:29:47 -07:00
Jeremy Reizenstein
53d99671bd remove PyTorch 1.5 builds
Summary: PyTorch 1.6.0 came out on 28 Jul 2020. Stop builds for 1.5.0 and 1.5.1. Also update the news section of the README for recent releases.

Reviewed By: nikhilaravi

Differential Revision: D31442830

fbshipit-source-id: 20bdd8a07090776d0461240e71c6536d874615f6
2021-10-11 06:13:01 -07:00
Pyre Bot Jr
6d36c1e2b0 suppress errors in vision/fair/pytorch3d
Differential Revision: D31496551

fbshipit-source-id: 705fd88f319875db3f7938a2946c48a51ea225f5
2021-10-07 21:58:08 -07:00
Nikhila Ravi
6dfa326922 IOU box3d epsilon fix
Summary: The epsilon value is important for determining whether vertices are inside/outside a plane.

Reviewed By: gkioxari

Differential Revision: D31485247

fbshipit-source-id: 5517575de7c02f1afa277d00e0190a81f44f5761
2021-10-07 18:42:09 -07:00
Jeremy Reizenstein
b26f4bc33a test tolerance loosenings
Summary: Increase some test tolerances so that they pass in more situations, and re-enable two tests.

Reviewed By: nikhilaravi

Differential Revision: D31379717

fbshipit-source-id: 06a25470cc7b6d71cd639d9fd7df500d4b84c079
2021-10-07 10:48:12 -07:00
Ruilong Li
8fa438cbda Fix camera conversion between opencv and pytorch3d
Summary:
For non square image, the NDC space in pytorch3d is not square [-1, 1]. Instead, it is [-1, 1] for the smallest side, and [-u, u] for the largest side, where u > 1. This behavior is followed by the pytorch3d renderer.

See the function `get_ndc_to_screen_transform` for a example.

Without this fix, the rendering result is not correct using the converted pytorch3d-camera from a opencv-camera on non square images.

This fix also helps the `transform_points_screen` function delivers consistent results with opencv projection for the converted pytorch3d-camera.

Reviewed By: classner

Differential Revision: D31366775

fbshipit-source-id: 8858ae7b5cf5c0a4af5a2af40a1358b2fe4cf74b
2021-10-07 10:15:31 -07:00
CodemodService Bot
815a93ce89 Daily arc lint --take BLACK
Reviewed By: zertosh

Differential Revision: D31464988

fbshipit-source-id: 2eaf28d6869ccb70fd4df4f7de15d959cdaba0be
2021-10-06 21:19:23 -07:00
Jeremy Reizenstein
23ef666db1 build website in docker container
Summary: Do the website building in a docker container to avoid worrying about dependencies.

Reviewed By: nikhilaravi

Differential Revision: D30223892

fbshipit-source-id: 77b7b4630188167316891381f6ca9e9fbe7f0a05
2021-10-06 18:09:45 -07:00
Nikita Smetanin
d7d740abe9 Symmetric eigen 3x3 implementation + benchmark & tests
Summary:
Symmetric eigenvalues 3x3 implementation from https://github.com/fairinternal/denseposeslim/blob/roman_c3dpo/tools/functions.py#L612

based on https://en.wikipedia.org/wiki/Eigenvalue_algorithm#3.C3.973_matrices and https://www.geometrictools.com/Documentation/RobustEigenSymmetric3x3.pdf

Benchmarks show significant outperformance of symeig3x3 in comparison with torch implementations (torch.symeig and torch.linalg.eigh) on GPU (P100), especially for large batches: 70-280ns per sample vs 3400ns per sample for torch_linalg_eigh_1048576_cpu

It's worth mentioning that torch.linalg.eigh is still comparably fast for batches up to 8192 on CPU.

Some tests are still failing as the error thresholds need to be adjusted appropriately.

Reviewed By: patricklabatut

Differential Revision: D29915453

fbshipit-source-id: 7c1b062da631c57c4e22a42dd0027ea5e205f1b5
2021-10-06 10:57:07 -07:00
Jeremy Reizenstein
9585a58d10 version number 0.6.0
Summary: update

Reviewed By: patricklabatut

Differential Revision: D31338002

fbshipit-source-id: 90ed6c2ea411c0384dd233ee88e51b5f608eef88
v0.6.0
2021-10-05 16:25:25 -07:00
Jeremy Reizenstein
364a7dcaf4 Install.md for next release.
Summary: now supporting PyTorch 1.9.1

Reviewed By: patricklabatut

Differential Revision: D31338001

fbshipit-source-id: 11140819d10af388d31905a39f1da136cf9c5ff2
2021-10-05 16:25:25 -07:00
Georgia Gkioxari
1360d69ffb minor note fix
Summary: A small fix for the iou3d note

Reviewed By: bottler

Differential Revision: D31370686

fbshipit-source-id: 6c97302b5c78de52915f31be70f234179c4b246d
2021-10-03 17:17:47 -07:00
Jeremy Reizenstein
4281df19ce subsample pointclouds
Summary: New function to randomly subsample Pointclouds to a maximum size.

Reviewed By: nikhilaravi

Differential Revision: D30936533

fbshipit-source-id: 789eb5004b6a233034ec1c500f20f2d507a303ff
2021-10-02 13:40:16 -07:00
Jeremy Reizenstein
ee2b2feb98 Use C++/CUDA in points2vols
Summary:
Move the core of add_points_to_volumes to the new C++/CUDA implementation. Add new flag to let the user stop this happening. Avoids copies. About a 30% speedup on the larger cases, up to 50% on the smaller cases.

New timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                     4575           12591            110
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   25468           29186             20
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 202085          209897              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 46059           48188             11
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000                83759           95669              7
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              326056          339393              2
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2379            4738            211
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                     12100           63099             42
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    63323           63737              8
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   45216           45479             12
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  57205           58524              9
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                139499          139926              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   40129           40431             13
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 204949          239293              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               1664541         1664541              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               391573          395108              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000              674869          674869              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            2713632         2713632              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     12726           13506             40
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    73103           73299              7
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  598634          598634              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 398742          399256              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                543129          543129              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1242956         1242956              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  1814            8884            276
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 1996            8851            251
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000                4608           11529            109
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               5183           12508             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000              7106           14077             71
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            25914           31818             20
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    1778            8823            282
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   1825            8613            274
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  3154           10161            159
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 4888            9404            103
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                5194            9963             97
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000               8109           14933             62
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 3320           10306            151
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000                7003            8595             72
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000              49140           52957             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             35890           36918             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            58890           59337              9
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          286878          287600              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   2484            8805            202
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  3967            9090            127
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                19423           19799             26
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               33228           33329             16
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              37292           37370             14
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000             73550           74017              7
--------------------------------------------------------------------------------
```
Previous timings
```
Benchmark                                                               Avg Time(μs)      Peak Time(μs) Iterations
--------------------------------------------------------------------------------
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_1000                    10100           46422             50
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_10000                   28442           32100             18
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[25, 25, 25]_100000                 241127          254269              3
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_1000                 54149           79480             10
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_10000               125459          212734              4
ADD_POINTS_TO_VOLUMES_cpu_10_trilinear_[101, 111, 121]_100000              512739          512739              1
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_1000                       2866           13365            175
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_10000                      7026           12604             72
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[25, 25, 25]_100000                    48822           55607             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_1000                   38098           38576             14
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_10000                  48006           54120             11
ADD_POINTS_TO_VOLUMES_cpu_10_nearest_[101, 111, 121]_100000                131563          138536              4
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_1000                   64615           91735              8
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_10000                 228815          246095              3
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[25, 25, 25]_100000               3086615         3086615              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_1000               464298          465292              2
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_10000             1053440         1053440              1
ADD_POINTS_TO_VOLUMES_cpu_100_trilinear_[101, 111, 121]_100000            6736236         6736236              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_1000                     11940           12440             42
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_10000                    56641           58051              9
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[25, 25, 25]_100000                  711492          711492              1
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_1000                 326437          329846              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_10000                418514          427911              2
ADD_POINTS_TO_VOLUMES_cpu_100_nearest_[101, 111, 121]_100000              1524285         1524285              1
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_1000                  5949           13602             85
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_10000                 5817           13001             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[25, 25, 25]_100000               23833           25971             21
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_1000               9029           16178             56
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_10000             11595           18601             44
ADD_POINTS_TO_VOLUMES_cuda:0_10_trilinear_[101, 111, 121]_100000            46986           47344             11
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_1000                    2554            9747            196
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_10000                   2676            9537            187
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[25, 25, 25]_100000                  6567           14179             77
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_1000                 5840           12811             86
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_10000                6102           13128             82
ADD_POINTS_TO_VOLUMES_cuda:0_10_nearest_[101, 111, 121]_100000              11945           11995             42
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_1000                 7642           13671             66
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_10000               25190           25260             20
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[25, 25, 25]_100000             212018          212134              3
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_1000             40421           45692             13
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_10000            92078           92132              6
ADD_POINTS_TO_VOLUMES_cuda:0_100_trilinear_[101, 111, 121]_100000          457211          457229              2
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_1000                   3574           10377            140
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_10000                  7222           13023             70
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[25, 25, 25]_100000                48127           48165             11
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_1000               34732           35295             15
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_10000              43050           51064             12
ADD_POINTS_TO_VOLUMES_cuda:0_100_nearest_[101, 111, 121]_100000            106028          106058              5
--------------------------------------------------------------------------------
```

Reviewed By: nikhilaravi

Differential Revision: D29548609

fbshipit-source-id: 7026e832ea299145c3f6b55687f3c1601294f5c0
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
9ad98c87c3 Cuda function for points2vols
Summary: Added CUDA implementation to match the new, still unused, C++ function for the core of points2vols.

Reviewed By: nikhilaravi

Differential Revision: D29548608

fbshipit-source-id: 16ebb61787fcb4c70461f9215a86ad5f97aecb4e
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
0dfc6e0eb8 CPU function for points2vols
Summary: Single C++ function for the core of points2vols, not used anywhere yet. Added ability to control align_corners and the weight of each point, which may be useful later.

Reviewed By: nikhilaravi

Differential Revision: D29548607

fbshipit-source-id: a5cda7ec2c14836624e7dfe744c4bbb3f3d3dfe2
2021-10-01 11:58:24 -07:00
Jeremy Reizenstein
c7c6deab86 compatibility statement in README
Summary: Statement about compatibility.

Reviewed By: nikhilaravi

Differential Revision: D30697072

fbshipit-source-id: aeb5e3e0a08c1797033d8c00b24484c8a699cb02
2021-09-30 10:50:11 -07:00
Jeremy Reizenstein
4ad8576541 rasterization header comment fixes
Summary: Fix some missing or misplaced argument descriptions.

Reviewed By: nikhilaravi

Differential Revision: D31305132

fbshipit-source-id: af4fcee9766682b2b7f7f16327e839090e377be2
2021-09-30 10:41:50 -07:00
Simon Moisselin
a5cbb624c1 Fix typo in chamfer loss docstring (#862)
Summary:
y_lengths is about `y`, not `x`.

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/862

Reviewed By: bottler

Differential Revision: D31304434

Pulled By: patricklabatut

fbshipit-source-id: 1db4cd57677fc018c229e02172f95ffa903d75eb
2021-09-30 05:10:18 -07:00
Theo-Cheynel
720bdf60f5 Removed typos 'f' from the f-string error messages (#851)
Summary:
Changed mistake in Python f-strings causing an additional letter "f" to appear in the error messages.
The error messages would read something like :
```
raise ValueError(f"Invalid rotation matrix  shape f{matrix.shape}.")
ValueError: Invalid rotation matrix  shape ftorch.Size([4, 4]).
```
(with an additional f, probably a mistake)

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/851

Reviewed By: nikhilaravi

Differential Revision: D31238831

Pulled By: patricklabatut

fbshipit-source-id: 0ba3e61e488e467e997954278097889be606d4f8
2021-09-30 03:26:14 -07:00
Jeremy Reizenstein
1aab192706 Linter when only python3 exists
Reviewed By: nikhilaravi

Differential Revision: D31289856

fbshipit-source-id: 5a522a69537a873bacacf2a178e5f30771aef35f
2021-09-30 00:55:38 -07:00
Jeremy Reizenstein
dd76b41014 save colors as uint8 in PLY
Summary: Allow saving colors as 8bit when writing .ply files.

Reviewed By: patricklabatut, nikitos9000

Differential Revision: D30905312

fbshipit-source-id: 44500982c9ed6d6ee901e04f9623e22792a0e7f7
2021-09-30 00:48:52 -07:00
Georgia Gkioxari
1b1ba5612f Note for iou3d
Summary:
A note for our new algorithm for IoU of oriented 3D boxes. It includes
* A description of the algorithm
* A comparison with Objectron

Reviewed By: nikhilaravi

Differential Revision: D31288066

fbshipit-source-id: 0ea8da887bc5810bf4a3e0848223dd3590df1538
2021-09-29 19:15:19 -07:00
Nikhila Ravi
ff8d4762f4 (new) CUDA IoU for 3D boxes
Summary: CUDA implementation of 3D bounding box overlap calculation.

Reviewed By: gkioxari

Differential Revision: D31157919

fbshipit-source-id: 5dc89805d01fef2d6779f00a33226131e39c43ed
2021-09-29 18:49:09 -07:00
Nikhila Ravi
53266ec9ff C++ IoU for 3D Boxes
Summary: C++ Implementation of algorithm to compute 3D bounding boxes for batches of bboxes of shape (N, 8, 3) and (M, 8, 3).

Reviewed By: gkioxari

Differential Revision: D30905190

fbshipit-source-id: 02e2cf025cd4fa3ff706ce5cf9b82c0fb5443f96
2021-09-29 17:03:43 -07:00
Nikhila Ravi
2293f1fed0 IoU for 3D boxes
Summary:
I have implemented an exact solution for 3D IoU of oriented 3D boxes.

This file includes:
* box3d_overlap: which computes the exact IoU of box1 and box2
* box3d_overlap_sampling: which computes an approximate IoU of box1 and box2 by sampling points within the boxes

Note that both implementations currently do not support batching.

Our exact IoU implementation is based on the fact that the intersecting shape of the two 3D boxes will be formed by segments of the surface of the boxes. Our algorithm computes these segments by reasoning whether triangles of one box are within the second box and vice versa. We deal with intersecting triangles by clipping them.

Reviewed By: gkioxari

Differential Revision: D30667497

fbshipit-source-id: 2f747f410f90b7f854eeaf3036794bc3ac982917
2021-09-29 13:44:10 -07:00
Pyre Bot Jr
5b89c4e3bb suppress errors in vision/fair/pytorch3d
Differential Revision: D31266959

fbshipit-source-id: 878a59ca2cfe1389e42fc338653e8d3314b56b91
2021-09-29 05:07:37 -07:00
Jeremy Reizenstein
d0ca3b9e0c builds for PyTorch 1.9.1
Summary: Add conda builds for the newly released PyTorch version 1.9.1.

Reviewed By: patricklabatut

Differential Revision: D31140206

fbshipit-source-id: 697549a3ef0db8248f4f9b5c00cf1407296b5022
2021-09-27 04:17:13 -07:00
Jeremy Reizenstein
9a737da83c More renderer parameter descriptions
Summary:
Copy some descriptions of renderer parameters to more places so they are easier to find.

Also a couple of small corrections, and make RasterizationSettings a dataclass.

Reviewed By: nikhilaravi, patricklabatut

Differential Revision: D30899822

fbshipit-source-id: 805cf366acb7d51cb308fa574deff0657c199673
2021-09-24 09:59:24 -07:00
Jeremy Reizenstein
860b742a02 deterministic rasterization
Summary: Attempt to fix #659, an observation that the rasterizer is nondeterministic, by resolving tied faces by picking those with lower index.

Reviewed By: nikhilaravi, patricklabatut

Differential Revision: D30699039

fbshipit-source-id: 39ed797eb7e9ce7370ae71259ad6b757f9449923
2021-09-23 06:59:48 -07:00
Jeremy Reizenstein
cb170ac024 Avoid torch/extension.h in cuda
Summary: Unlike other cu files, sigmoid_alpha_blend uses torch/extension.h. Avoid for possible build speed win and because of a reported problem #843 on windows with CUDA 11.4.

Reviewed By: nikhilaravi

Differential Revision: D31054121

fbshipit-source-id: 53a1f985a1695a044dfd2ee1a5b0adabdf280595
2021-09-22 15:54:59 -07:00
Jeremy Reizenstein
fe5bfa5994 rename cpp to avoid clash
Summary: Rename sample_farthest_point.cpp to not match its CUDA equivalent.

Reviewed By: nikhilaravi

Differential Revision: D31006645

fbshipit-source-id: 135b511cbde320d2b3e07fc5b027971ef9210aa9
2021-09-22 15:54:59 -07:00
Jeremy Reizenstein
dbfb3a910a remove __restrict__ in cpp
Summary: Remove use of nonstandard C++. Noticed on windows in issue https://github.com/facebookresearch/pytorch3d/issues/843. (We use `__restrict__` in CUDA, where it is fine, even on windows)

Reviewed By: nikhilaravi

Differential Revision: D31006516

fbshipit-source-id: 929ba9b3216cb70fad3ffa3274c910618d83973f
2021-09-22 15:54:59 -07:00
Pyre Bot Jr
526df446c6 suppress errors in vision/fair/pytorch3d
Differential Revision: D31042748

fbshipit-source-id: fffb983bd6765d306a407587ddf64e68e57e9ecc
2021-09-18 12:24:58 -07:00
Nikhila Ravi
bd04ffaf77 Farthest point sampling CUDA
Summary:
CUDA implementation of farthest point sampling algorithm.

## Visual comparison

Compared to random sampling, farthest point sampling gives better coverage of the shape.

{F658631262}

## Reduction

Parallelized block reduction to find the max value at each iteration happens as follows:

1. First split the points into two equal sized parts (e.g. for a list with 8 values):
`[20, 27, 6, 8 | 11, 10, 2, 33]`
2. Use half of the thread (4 threads) to compare pairs of elements from each half (e.g elements [0, 4], [1, 5] etc) and store the result in the first half of the list:
`[20, 27, 6, 33 | 11, 10, 2, 33]`
Now we no longer care about the second part but again divide the first part into two
`[20, 27 | 6, 33| -, -, -, -]`
Now we can use 2 threads to compare the 4 elements
4. Finally we have gotten down to a single pair
`[20 | 33 | -, - | -, -, -, -]`
Use 1 thread to compare the remaining two elements
5. The max will now be at thread id = 0
`[33 | - | -, - | -, -, -, -]`
The reduction will give the farthest point for the selected batch index at this iteration.

Reviewed By: bottler, jcjohnson

Differential Revision: D30401803

fbshipit-source-id: 525bd5ae27c4b13b501812cfe62306bb003827d2
2021-09-15 13:49:22 -07:00
Nikhila Ravi
d9f7611c4b Farthest point sampling C++
Summary: C++ implementation of iterative farthest point sampling.

Reviewed By: jcjohnson

Differential Revision: D30349887

fbshipit-source-id: d25990f857752633859fe00283e182858a870269
2021-09-15 13:49:21 -07:00
Nikhila Ravi
3b7d78c7a7 Farthest point sampling python naive
Summary:
This is a naive python implementation of the iterative farthest point sampling algorithm along with associated simple tests. The C++/CUDA implementations will follow in subsequent diffs.

The algorithm is used to subsample a pointcloud with better coverage of the space of the pointcloud.

The function has not been added to `__init__.py`. I will add this after the full C++/CUDA implementations.

Reviewed By: jcjohnson

Differential Revision: D30285716

fbshipit-source-id: 33f4181041fc652776406bcfd67800a6f0c3dd58
2021-09-15 13:49:21 -07:00
Jeremy Reizenstein
a0d76a7080 join_scene fix for TexturesUV
Summary: Fix issue #826. This is a correction to the joining of TexturesUV into a single scene.

Reviewed By: nikhilaravi

Differential Revision: D30767092

fbshipit-source-id: 03ba6a1d2f22e569d1b3641cd13ddbb8dcb87ec7
2021-09-13 07:08:58 -07:00
Shangchen Han
46f727cb68 make so3_log_map torch script compatible
Summary:
* HAT_INV_SKEW_SYMMETRIC_TOL was a global variable and torch script gives an error when compiling that function. Move it to the function scope.
* torch script gives error when compiling acos_linear_extrapolation because bound is a union of tuple and float. The tuple version is kept in this diff.

Reviewed By: patricklabatut

Differential Revision: D30614916

fbshipit-source-id: 34258d200dc6a09fbf8917cac84ba8a269c00aef
2021-09-10 11:13:26 -07:00
Jeremy Reizenstein
c3d7808868 register_buffer compatibility
Summary: In D30349234 (1b8d86a104) we introduced persistent=False to some register_buffer calls, which depend on PyTorch 1.6. We go back to the old behaviour for PyTorch 1.5.

Reviewed By: nikhilaravi

Differential Revision: D30731327

fbshipit-source-id: ab02ef98ee87440ef02479b72f4872b562ab85b5
2021-09-09 07:37:57 -07:00
Justin Johnson
bbc7573261 Unify coarse rasterization for points and meshes
Summary:
There has historically been a lot of duplication between the coarse rasterization logic for point clouds and meshes. This diff factors out the shared logic, so coarse rasterization of point clouds and meshes share the same core logic.

Previously the only difference between the coarse rasterization kernels for points and meshes was the logic for checking whether a {point / triangle} intersects a tile in the image. We implement a generic coarse rasterization kernel that takes a set of 2D bounding boxes rather than geometric primitives; we then implement separate kernels that compute 2D bounding boxes for points and triangles.

This change does not affect the Python API at all. It also should not change any rasterization behavior, since this diff is just a refactoring of the existing logic.

I see this diff as the first in a few pieces of rasterizer refactoring. Followup diffs should do the following:
- Add a check for bin overflow in the generic coarse rasterizer kernel: allocate a global scalar to flag bin overflow which kernel worker threads can write to in case they detect bin overflow. The C++ launcher function can then check this flag after the kernel returns and issue a warning to the user in case of overflow.
- As a slightly more involved mechanism, if bin overflow is detected then the coarse kernel can continue running in order to count how many elements fall into each bin, without actually writing out their indices to the coarse output tensor. Then the actual number of entries per bin can be used to re-allocate the output tensor and re-run the coarse rasterization kernel so that bin overflow can be automatically avoided.
- The unification of the coarse and fine rasterization kernels also allows us to insert an extra CUDA kernel prior to coarse rasterization that filters out primitives outside the view frustum. This would be helpful for rendering full scenes (e.g. Matterport data) where only a small piece of the mesh is actually visible at any one time.

Reviewed By: bottler

Differential Revision: D25710361

fbshipit-source-id: 9c9dea512cb339c42adb3c92e7733fedd586ce1b
2021-09-08 16:17:30 -07:00
Justin Johnson
eed68f457d Refactor mesh coarse rasterization
Summary: Renaming parts of the mesh coarse rasterization and separating the bounding box calculation. All in preparation for sharing code with point rasterization.

Reviewed By: bottler

Differential Revision: D30369112

fbshipit-source-id: 3508c0b1239b355030cfa4038d5f3d6a945ebbf4
2021-09-08 16:17:30 -07:00
Justin Johnson
62dbf371ae Move coarse rasterization to new file
Summary: In preparation for sharing coarse rasterization between point clouds and meshes, move the functions to a new file. No code changes.

Reviewed By: bottler

Differential Revision: D30367812

fbshipit-source-id: 9e73835a26c4ac91f5c9f61ff682bc8218e36c6a
2021-09-08 16:17:30 -07:00
Jeremy Reizenstein
f2c44e3540 update test_build for robustness
Summary: Change cyclic deps test to be independent of test discovery order. Also let it work without plotly.

Reviewed By: nikhilaravi

Differential Revision: D30669614

fbshipit-source-id: 2eadf3f8b56b6096c5466ce53b4f8ac6df27b964
2021-09-02 09:32:29 -07:00
Jeremy Reizenstein
a9b0d50baf Restore missing linux conda builds
Summary: Regenerate config.yml after a recent bad merge which lost a few builds.

Reviewed By: nikhilaravi

Differential Revision: D30696918

fbshipit-source-id: 3ecdfca8682baed13692ec710aa7c25dbd24dd44
2021-09-01 10:29:05 -07:00
Nikhila Ravi
fc156b50c0 (bug) Fix exception when creating a TextureAtlas
Summary: Fixes GitHub issue #751. The vectorized implementation of bilinear interpolation didn't properly handle the edge cases in the same way as the `grid_sample` method in PyTorch.

Reviewed By: bottler

Differential Revision: D30684208

fbshipit-source-id: edf241ecbd72d46b94ad340a4e601e26c83db88e
2021-09-01 09:26:44 -07:00
Georgia Gkioxari
835e662fb5 master -> main
Summary: Replace master with main in hard coded paths or mentions in documentation

Reviewed By: bottler

Differential Revision: D30696097

fbshipit-source-id: d5ff67bb026d90d1543d10ab027f916e8361ca69
2021-09-01 05:33:25 -07:00
Jeremy Reizenstein
1b8d86a104 (breaking) image_size-agnostic GridRaySampler
Summary:
As suggested in #802. By not persisting the _xy_grid buffer, we can allow (in some cases) a model with one image_size to be loaded from a saved model which was trained at a different resolution.

Also avoid persisting _frequencies in HarmonicEmbedding for similar reasons.

BC-break: This will cause load_state_dict, in strict mode, to complain if you try to load an old model with the new code.

Reviewed By: patricklabatut

Differential Revision: D30349234

fbshipit-source-id: d6061d1e51c9f79a78d61a9f732c9a5dfadbbb47
2021-08-31 14:30:24 -07:00
Jeremy Reizenstein
1251446383 Use sample_pdf from PyTorch3D in NeRF
Summary:
Use PyTorch3D's new faster sample_pdf function instead of local Python implementation.

Also clarify deps for the Python implementation.

Reviewed By: gkioxari

Differential Revision: D30512109

fbshipit-source-id: 84cfdc00313fada37a6b29837de96f6a4646434f
2021-08-31 11:26:26 -07:00
Alex Naumann
d2bbd0cdb7 Fix link to render textured meshes example (#818)
Summary:
Great work! :)
Just found a link in the examples that is not working. This will fix it.

Best,
Alex

Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/818

Reviewed By: nikhilaravi

Differential Revision: D30637532

Pulled By: patricklabatut

fbshipit-source-id: ed6c52375d1e760cb0fb2c0a66648dfeb0c6ed46
2021-08-30 13:11:53 -07:00