Summary:
Converts the directory specified to use the Ruff formatter in pyfmt
ruff_dog
If this diff causes merge conflicts when rebasing, please run
`hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt`
on your diff, and amend any changes before rebasing onto latest.
That should help reduce or eliminate any merge conflicts.
allow-large-files
Reviewed By: bottler
Differential Revision: D66472063
fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
Summary: Making it easier for the clients to use these datasets.
Reviewed By: bottler
Differential Revision: D46727179
fbshipit-source-id: cf619aee4c4c0222a74b30ea590cf37f08f014cc
Summary:
This is mostly a refactoring diff to reduce friction in extending the frame data.
Slight functional changes: dataset getitem now accepts (seq_name, frame_number_as_singleton_tensor) as a non-advertised feature. Otherwise this code crashes:
```
item = dataset[0]
dataset[item.sequence_name, item.frame_number]
```
Reviewed By: bottler
Differential Revision: D45780175
fbshipit-source-id: 75b8e8d3dabed954a804310abdbd8ab44a8dea29
Summary:
Introduces the OverfitModel for NeRF-style training with overfitting to one scene.
It is a specific case of GenericModel. It has been disentangle to ease usage.
## General modification
1. Modularize a minimum GenericModel to introduce OverfitModel
2. Introduce OverfitModel and ensure through unit testing that it behaves like GenericModel.
## Modularization
The following methods have been extracted from GenericModel to allow modularity with ManyViewModel:
- get_objective is now a call to weighted_sum_losses
- log_loss_weights
- prepare_inputs
The generic methods have been moved to an utils.py file.
Simplify the code to introduce OverfitModel.
Private methods like chunk_generator are now public and can now be used by ManyViewModel.
Reviewed By: shapovalov
Differential Revision: D43771992
fbshipit-source-id: 6102aeb21c7fdd56aa2ff9cd1dd23fd9fbf26315
Summary: Allow using the new `foreach` option on optimizers.
Reviewed By: shapovalov
Differential Revision: D39694843
fbshipit-source-id: 97109c245b669bc6edff0f246893f95b7ae71f90
Summary: Various fixes to get visualize_reconstruction running, and an interactive test for it.
Reviewed By: kjchalup
Differential Revision: D39286691
fbshipit-source-id: 88735034cc01736b24735bcb024577e6ab7ed336
Summary:
Adds yaml configs to train selected methods on CO3Dv2.
Few more updates:
1) moved some fields to base classes so that we can check is_multisequence in experiment.py
2) skip loading all train cameras for multisequence datasets, without this, co3d-fewview is untrainable
3) fix bug in json index dataset provider v2
Reviewed By: kjchalup
Differential Revision: D38952755
fbshipit-source-id: 3edac6fc8e20775aa70400bd73a0e6d52b091e0c
Summary:
LLFF (and most/all non-synth datasets) will have no background/foreground distinction. Add support for data with no fg mask.
Also, we had a bug in stats loading, like this:
* Load stats
* One of the stats has a history of length 0
* That's fine, e.g. maybe it's fg_error but the dataset has no notion of fg/bg. So leave it as len 0
* Check whether all the stats have the same history length as an arbitrarily chosen "reference-stat"
* Ooops the reference-stat happened to be the stat with length 0
* assert (legit_stat_len == reference_stat_len (=0)) ---> failed assert
Also some minor fixes (from Jeremy's other diff) to support LLFF
Reviewed By: davnov134
Differential Revision: D38475272
fbshipit-source-id: 5b35ac86d1d5239759f537621f41a3aa4eb3bd68
Summary:
Stats are logically connected to the training loop, not to the model. Hence, moving to the training loop.
Also removing resume_epoch from OptimizerFactory in favor of a single place - ModelFactory. This removes the need for config consistency checks etc.
Reviewed By: kjchalup
Differential Revision: D38313475
fbshipit-source-id: a1d188a63e28459df381ff98ad8acdcdb14887b7
Summary:
This large diff rewrites a significant portion of Implicitron's config hierarchy. The new hierarchy, and some of the default implementation classes, are as follows:
```
Experiment
data_source: ImplicitronDataSource
dataset_map_provider
data_loader_map_provider
model_factory: ImplicitronModelFactory
model: GenericModel
optimizer_factory: ImplicitronOptimizerFactory
training_loop: ImplicitronTrainingLoop
evaluator: ImplicitronEvaluator
```
1) Experiment (used to be ExperimentConfig) is now a top-level Configurable and contains as members mainly (mostly new) high-level factory Configurables.
2) Experiment's job is to run factories, do some accelerate setup and then pass the results to the main training loop.
3) ImplicitronOptimizerFactory and ImplicitronModelFactory are new high-level factories that create the optimizer, scheduler, model, and stats objects.
4) TrainingLoop is a new configurable that runs the main training loop and the inner train-validate step.
5) Evaluator is a new configurable that TrainingLoop uses to run validation/test steps.
6) GenericModel is not the only model choice anymore. Instead, ImplicitronModelBase (by default instantiated with GenericModel) is a member of Experiment and can be easily replaced by a custom implementation by the user.
All the new Configurables are children of ReplaceableBase, and can be easily replaced with custom implementations.
In addition, I added support for the exponential LR schedule, updated the config files and the test, as well as added a config file that reproduces NERF results and a test to run the repro experiment.
Reviewed By: bottler
Differential Revision: D37723227
fbshipit-source-id: b36bee880d6aa53efdd2abfaae4489d8ab1e8a27
Summary:
## Changes:
- Added Accelerate Library and refactored experiment.py to use it
- Needed to move `init_optimizer` and `ExperimentConfig` to a separate file to be compatible with submitit/hydra
- Needed to make some modifications to data loaders etc to work well with the accelerate ddp wrappers
- Loading/saving checkpoints incorporates an unwrapping step so remove the ddp wrapped model
## Tests
Tested with both `torchrun` and `submitit/hydra` on two gpus locally. Here are the commands:
**Torchrun**
Modules loaded:
```sh
1) anaconda3/2021.05 2) cuda/11.3 3) NCCL/2.9.8-3-cuda.11.3 4) gcc/5.2.0. (but unload gcc when using submit)
```
```sh
torchrun --nnodes=1 --nproc_per_node=2 experiment.py --config-path ./configs --config-name repro_singleseq_nerf_test
```
**Submitit/Hydra Local test**
```sh
~/pytorch3d/projects/implicitron_trainer$ HYDRA_FULL_ERROR=1 python3.9 experiment.py --config-name repro_singleseq_nerf_test --multirun --config-path ./configs hydra/launcher=submitit_local hydra.launcher.gpus_per_node=2 hydra.launcher.tasks_per_node=2 hydra.launcher.nodes=1
```
**Submitit/Hydra distributed test**
```sh
~/implicitron/pytorch3d$ python3.9 experiment.py --config-name repro_singleseq_nerf_test --multirun --config-path ./configs hydra/launcher=submitit_slurm hydra.launcher.gpus_per_node=8 hydra.launcher.tasks_per_node=8 hydra.launcher.nodes=1 hydra.launcher.partition=learnlab hydra.launcher.timeout_min=4320
```
## TODOS:
- Fix distributed evaluation: currently this doesn't work as the input format to the evaluation function is not suitable for gathering across gpus (needs to be nested list/tuple/dicts of objects that satisfy `is_torch_tensor`) and currently `frame_data` contains `Cameras` type.
- Refactor the `accelerator` object to be accessible by all functions instead of needing to pass it around everywhere? Maybe have a `Trainer` class and add it as a method?
- Update readme with installation instructions for accelerate and also commands for running jobs with torchrun and submitit/hydra
X-link: https://github.com/fairinternal/pytorch3d/pull/37
Reviewed By: davnov134, kjchalup
Differential Revision: D37543870
Pulled By: bottler
fbshipit-source-id: be9eb4e91244d4fe3740d87dafec622ae1e0cf76
Summary: Make dataset type and args configurable on JsonIndexDatasetMapProvider.
Reviewed By: davnov134
Differential Revision: D36666705
fbshipit-source-id: 4d0a3781d9a956504f51f1c7134c04edf1eb2846