Add CPU implementation for nearest neighbor

Summary:
Adds a CPU implementation for `pytorch3d.ops.nn_points_idx`.

Also renames the associated C++ and CUDA functions to use `AllCaps` names used in other C++ / CUDA code.

Reviewed By: gkioxari

Differential Revision: D19670491

fbshipit-source-id: 1b6409404025bf05e6a93f5d847e35afc9062f05
This commit is contained in:
Justin Johnson
2020-02-03 10:04:10 -08:00
committed by Facebook Github Bot
parent 25c2f34096
commit e290f87ca9
6 changed files with 86 additions and 26 deletions

View File

@@ -27,6 +27,13 @@ def bm_nn_points() -> None:
warmup_iters=1,
)
benchmark(
TestNearestNeighborPoints.bm_nn_points_cpu_with_init,
"NN_CPU",
kwargs_list,
warmup_iters=1,
)
if torch.cuda.is_available():
benchmark(
TestNearestNeighborPoints.bm_nn_points_cuda_with_init,

View File

@@ -21,11 +21,7 @@ class TestNearestNeighborPoints(unittest.TestCase):
idx = dists2.argmin(2)
return idx
def test_nn_cuda(self):
"""
Test cuda output vs naive python implementation.
"""
device = torch.device("cuda:0")
def _test_nn_helper(self, device):
for D in [3, 4]:
for N in [1, 4]:
for P1 in [1, 8, 64, 128]:
@@ -43,16 +39,32 @@ class TestNearestNeighborPoints(unittest.TestCase):
self.assertTrue(idx1.size(1) == P1)
self.assertTrue(torch.all(idx1 == idx2))
def test_nn_cuda_error(self):
def test_nn_cuda(self):
"""
Check that nn_points_idx throws an error if cpu tensors
are given as input.
Test cuda output vs naive python implementation.
"""
x = torch.randn(1, 1, 3)
y = torch.randn(1, 1, 3)
with self.assertRaises(Exception) as err:
_C.nn_points_idx(x, y)
self.assertTrue("Not implemented on the CPU" in str(err.exception))
device = torch.device('cuda:0')
self._test_nn_helper(device)
def test_nn_cpu(self):
"""
Test cpu output vs naive python implementation
"""
device = torch.device('cpu')
self._test_nn_helper(device)
@staticmethod
def bm_nn_points_cpu_with_init(
N: int = 4, D: int = 4, P1: int = 128, P2: int = 128
):
device = torch.device('cpu')
x = torch.randn(N, P1, D, device=device)
y = torch.randn(N, P2, D, device=device)
def nn_cpu():
_C.nn_points_idx(x.contiguous(), y.contiguous())
return nn_cpu
@staticmethod
def bm_nn_points_cuda_with_init(