mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	Add CPU implementation for nearest neighbor
Summary: Adds a CPU implementation for `pytorch3d.ops.nn_points_idx`. Also renames the associated C++ and CUDA functions to use `AllCaps` names used in other C++ / CUDA code. Reviewed By: gkioxari Differential Revision: D19670491 fbshipit-source-id: 1b6409404025bf05e6a93f5d847e35afc9062f05
This commit is contained in:
		
							parent
							
								
									25c2f34096
								
							
						
					
					
						commit
						e290f87ca9
					
				@ -11,7 +11,7 @@
 | 
			
		||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
 | 
			
		||||
  m.def("face_areas_normals", &face_areas_normals);
 | 
			
		||||
  m.def("packed_to_padded_tensor", &packed_to_padded_tensor);
 | 
			
		||||
  m.def("nn_points_idx", &nn_points_idx);
 | 
			
		||||
  m.def("nn_points_idx", &NearestNeighborIdx);
 | 
			
		||||
  m.def("gather_scatter", &gather_scatter);
 | 
			
		||||
  m.def("rasterize_points", &RasterizePoints);
 | 
			
		||||
  m.def("rasterize_points_backward", &RasterizePointsBackward);
 | 
			
		||||
 | 
			
		||||
@ -4,7 +4,7 @@
 | 
			
		||||
#include <float.h>
 | 
			
		||||
 | 
			
		||||
template <typename scalar_t>
 | 
			
		||||
__device__ void warp_reduce(
 | 
			
		||||
__device__ void WarpReduce(
 | 
			
		||||
    volatile scalar_t* min_dists,
 | 
			
		||||
    volatile long* min_idxs,
 | 
			
		||||
    const size_t tid) {
 | 
			
		||||
@ -54,7 +54,7 @@ __device__ void warp_reduce(
 | 
			
		||||
//         is aligned.
 | 
			
		||||
//
 | 
			
		||||
template <typename scalar_t>
 | 
			
		||||
__global__ void nearest_neighbor_kernel(
 | 
			
		||||
__global__ void NearestNeighborKernel(
 | 
			
		||||
    const scalar_t* __restrict__ points1,
 | 
			
		||||
    const scalar_t* __restrict__ points2,
 | 
			
		||||
    long* __restrict__ idx,
 | 
			
		||||
@ -123,7 +123,7 @@ __global__ void nearest_neighbor_kernel(
 | 
			
		||||
  // Unroll the last 6 iterations of the loop since they will happen
 | 
			
		||||
  // synchronized within a single warp.
 | 
			
		||||
  if (tid < 32)
 | 
			
		||||
    warp_reduce<scalar_t>(min_dists, min_idxs, tid);
 | 
			
		||||
    WarpReduce<scalar_t>(min_dists, min_idxs, tid);
 | 
			
		||||
 | 
			
		||||
  // Finally thread 0 writes the result to the output buffer.
 | 
			
		||||
  if (tid == 0) {
 | 
			
		||||
@ -144,7 +144,7 @@ __global__ void nearest_neighbor_kernel(
 | 
			
		||||
//    P2: Number of points in points2.
 | 
			
		||||
//
 | 
			
		||||
template <typename scalar_t>
 | 
			
		||||
__global__ void nearest_neighbor_kernel_D3(
 | 
			
		||||
__global__ void NearestNeighborKernelD3(
 | 
			
		||||
    const scalar_t* __restrict__ points1,
 | 
			
		||||
    const scalar_t* __restrict__ points2,
 | 
			
		||||
    long* __restrict__ idx,
 | 
			
		||||
@ -204,7 +204,7 @@ __global__ void nearest_neighbor_kernel_D3(
 | 
			
		||||
  // Unroll the last 6 iterations of the loop since they will happen
 | 
			
		||||
  // synchronized within a single warp.
 | 
			
		||||
  if (tid < 32)
 | 
			
		||||
    warp_reduce<scalar_t>(min_dists, min_idxs, tid);
 | 
			
		||||
    WarpReduce<scalar_t>(min_dists, min_idxs, tid);
 | 
			
		||||
 | 
			
		||||
  // Finally thread 0 writes the result to the output buffer.
 | 
			
		||||
  if (tid == 0) {
 | 
			
		||||
@ -212,7 +212,7 @@ __global__ void nearest_neighbor_kernel_D3(
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
at::Tensor nn_points_idx_cuda(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
at::Tensor NearestNeighborIdxCuda(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
  const auto N = p1.size(0);
 | 
			
		||||
  const auto P1 = p1.size(1);
 | 
			
		||||
  const auto P2 = p2.size(1);
 | 
			
		||||
@ -231,7 +231,7 @@ at::Tensor nn_points_idx_cuda(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
    AT_DISPATCH_FLOATING_TYPES(p1.type(), "nearest_neighbor_v3_cuda", ([&] {
 | 
			
		||||
                                 size_t shared_size = threads * sizeof(size_t) +
 | 
			
		||||
                                     threads * sizeof(long);
 | 
			
		||||
                                 nearest_neighbor_kernel_D3<scalar_t>
 | 
			
		||||
                                 NearestNeighborKernelD3<scalar_t>
 | 
			
		||||
                                     <<<blocks, threads, shared_size>>>(
 | 
			
		||||
                                         p1.data_ptr<scalar_t>(),
 | 
			
		||||
                                         p2.data_ptr<scalar_t>(),
 | 
			
		||||
@ -249,7 +249,7 @@ at::Tensor nn_points_idx_cuda(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
          size_t D_2 = D + (D % 2);
 | 
			
		||||
          size_t shared_size = (D_2 + threads) * sizeof(size_t);
 | 
			
		||||
          shared_size += threads * sizeof(long);
 | 
			
		||||
          nearest_neighbor_kernel<scalar_t><<<blocks, threads, shared_size>>>(
 | 
			
		||||
          NearestNeighborKernel<scalar_t><<<blocks, threads, shared_size>>>(
 | 
			
		||||
              p1.data_ptr<scalar_t>(),
 | 
			
		||||
              p2.data_ptr<scalar_t>(),
 | 
			
		||||
              idx.data_ptr<long>(),
 | 
			
		||||
 | 
			
		||||
@ -19,19 +19,22 @@
 | 
			
		||||
//                     to p1[n, i] in the cloud p2[n] is p2[n, j].
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
// CPU implementation.
 | 
			
		||||
at::Tensor NearestNeighborIdxCpu(at::Tensor p1, at::Tensor p2);
 | 
			
		||||
 | 
			
		||||
// Cuda implementation.
 | 
			
		||||
at::Tensor nn_points_idx_cuda(at::Tensor p1, at::Tensor p2);
 | 
			
		||||
at::Tensor NearestNeighborIdxCuda(at::Tensor p1, at::Tensor p2);
 | 
			
		||||
 | 
			
		||||
// Implementation which is exposed.
 | 
			
		||||
at::Tensor nn_points_idx(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
at::Tensor NearestNeighborIdx(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
  if (p1.type().is_cuda() && p2.type().is_cuda()) {
 | 
			
		||||
#ifdef WITH_CUDA
 | 
			
		||||
    CHECK_CONTIGUOUS_CUDA(p1);
 | 
			
		||||
    CHECK_CONTIGUOUS_CUDA(p2);
 | 
			
		||||
    return nn_points_idx_cuda(p1, p2);
 | 
			
		||||
    return NearestNeighborIdxCuda(p1, p2);
 | 
			
		||||
#else
 | 
			
		||||
    AT_ERROR("Not compiled with GPU support.");
 | 
			
		||||
#endif
 | 
			
		||||
  }
 | 
			
		||||
  AT_ERROR("Not implemented on the CPU.");
 | 
			
		||||
  return NearestNeighborIdxCpu(p1, p2);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
@ -0,0 +1,38 @@
 | 
			
		||||
// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
 | 
			
		||||
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
 | 
			
		||||
at::Tensor NearestNeighborIdxCpu(at::Tensor p1, at::Tensor p2) {
 | 
			
		||||
    const int N = p1.size(0);
 | 
			
		||||
    const int P1 = p1.size(1);
 | 
			
		||||
    const int D = p1.size(2);
 | 
			
		||||
    const int P2 = p2.size(1);
 | 
			
		||||
 | 
			
		||||
    auto long_opts = p1.options().dtype(torch::kInt64);
 | 
			
		||||
    torch::Tensor out = torch::empty({N, P1}, long_opts);
 | 
			
		||||
 | 
			
		||||
    auto p1_a = p1.accessor<float, 3>();
 | 
			
		||||
    auto p2_a = p2.accessor<float, 3>();
 | 
			
		||||
    auto out_a = out.accessor<int64_t, 2>();
 | 
			
		||||
 | 
			
		||||
    for (int n = 0; n < N; ++n) {
 | 
			
		||||
        for (int i1 = 0; i1 < P1; ++i1) {
 | 
			
		||||
            // TODO: support other floating-point types?
 | 
			
		||||
            float min_dist = -1;
 | 
			
		||||
            int64_t min_idx = -1;
 | 
			
		||||
            for (int i2 = 0; i2 < P2; ++i2) {
 | 
			
		||||
                float dist = 0;
 | 
			
		||||
                for (int d = 0; d < D; ++d) {
 | 
			
		||||
                    float diff = p1_a[n][i1][d] - p2_a[n][i2][d];
 | 
			
		||||
                    dist += diff * diff;
 | 
			
		||||
                }
 | 
			
		||||
                if (min_dist == -1 || dist < min_dist) {
 | 
			
		||||
                    min_dist = dist;
 | 
			
		||||
                    min_idx = i2;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            out_a[n][i1] = min_idx;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return out;
 | 
			
		||||
}
 | 
			
		||||
@ -27,6 +27,13 @@ def bm_nn_points() -> None:
 | 
			
		||||
        warmup_iters=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    benchmark(
 | 
			
		||||
        TestNearestNeighborPoints.bm_nn_points_cpu_with_init,
 | 
			
		||||
        "NN_CPU",
 | 
			
		||||
        kwargs_list,
 | 
			
		||||
        warmup_iters=1,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        benchmark(
 | 
			
		||||
            TestNearestNeighborPoints.bm_nn_points_cuda_with_init,
 | 
			
		||||
 | 
			
		||||
@ -21,11 +21,7 @@ class TestNearestNeighborPoints(unittest.TestCase):
 | 
			
		||||
        idx = dists2.argmin(2)
 | 
			
		||||
        return idx
 | 
			
		||||
 | 
			
		||||
    def test_nn_cuda(self):
 | 
			
		||||
        """
 | 
			
		||||
        Test cuda output vs naive python implementation.
 | 
			
		||||
        """
 | 
			
		||||
        device = torch.device("cuda:0")
 | 
			
		||||
    def _test_nn_helper(self, device):
 | 
			
		||||
        for D in [3, 4]:
 | 
			
		||||
            for N in [1, 4]:
 | 
			
		||||
                for P1 in [1, 8, 64, 128]:
 | 
			
		||||
@ -43,16 +39,32 @@ class TestNearestNeighborPoints(unittest.TestCase):
 | 
			
		||||
                        self.assertTrue(idx1.size(1) == P1)
 | 
			
		||||
                        self.assertTrue(torch.all(idx1 == idx2))
 | 
			
		||||
 | 
			
		||||
    def test_nn_cuda_error(self):
 | 
			
		||||
    def test_nn_cuda(self):
 | 
			
		||||
        """
 | 
			
		||||
        Check that nn_points_idx throws an error if cpu tensors
 | 
			
		||||
        are given as input.
 | 
			
		||||
        Test cuda output vs naive python implementation.
 | 
			
		||||
        """
 | 
			
		||||
        x = torch.randn(1, 1, 3)
 | 
			
		||||
        y = torch.randn(1, 1, 3)
 | 
			
		||||
        with self.assertRaises(Exception) as err:
 | 
			
		||||
            _C.nn_points_idx(x, y)
 | 
			
		||||
        self.assertTrue("Not implemented on the CPU" in str(err.exception))
 | 
			
		||||
        device = torch.device('cuda:0')
 | 
			
		||||
        self._test_nn_helper(device)
 | 
			
		||||
 | 
			
		||||
    def test_nn_cpu(self):
 | 
			
		||||
        """
 | 
			
		||||
        Test cpu output vs naive python implementation
 | 
			
		||||
        """
 | 
			
		||||
        device = torch.device('cpu')
 | 
			
		||||
        self._test_nn_helper(device)
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def bm_nn_points_cpu_with_init(
 | 
			
		||||
        N: int = 4, D: int = 4, P1: int = 128, P2: int = 128
 | 
			
		||||
    ):
 | 
			
		||||
        device = torch.device('cpu')
 | 
			
		||||
        x = torch.randn(N, P1, D, device=device)
 | 
			
		||||
        y = torch.randn(N, P2, D, device=device)
 | 
			
		||||
 | 
			
		||||
        def nn_cpu():
 | 
			
		||||
            _C.nn_points_idx(x.contiguous(), y.contiguous())
 | 
			
		||||
 | 
			
		||||
        return nn_cpu
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def bm_nn_points_cuda_with_init(
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user