mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 09:52:11 +08:00 
			
		
		
		
	test fixes and lints
Summary: - followup recent pyre change D63415925 - make tests remove temporary files - weights_only=True in torch.load - lint fixes 3 test fixes from VRehnberg in https://github.com/facebookresearch/pytorch3d/issues/1914 - imageio channels fix - frozen decorator in test_config - load_blobs positional Reviewed By: MichaelRamamonjisoa Differential Revision: D66162167 fbshipit-source-id: 7737e174691b62f1708443a4fae07343cec5bfeb
This commit is contained in:
		
							parent
							
								
									c17e6f947a
								
							
						
					
					
						commit
						e20cbe9b0e
					
				@ -36,5 +36,5 @@ then
 | 
			
		||||
 | 
			
		||||
  echo "Running pyre..."
 | 
			
		||||
  echo "To restart/kill pyre server, run 'pyre restart' or 'pyre kill' in fbcode/"
 | 
			
		||||
  ( cd ~/fbsource/fbcode; pyre -l vision/fair/pytorch3d/ )
 | 
			
		||||
  ( cd ~/fbsource/fbcode; arc pyre check //vision/fair/pytorch3d/... )
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
@ -32,7 +32,6 @@ requirements:
 | 
			
		||||
 | 
			
		||||
build:
 | 
			
		||||
  string: py{{py}}_{{ environ['CU_VERSION'] }}_pyt{{ environ['PYTORCH_VERSION_NODOT']}}
 | 
			
		||||
  # script: LD_LIBRARY_PATH=$PREFIX/lib:$BUILD_PREFIX/lib:$LD_LIBRARY_PATH python setup.py install --single-version-externally-managed --record=record.txt # [not win]
 | 
			
		||||
  script: python setup.py install --single-version-externally-managed --record=record.txt # [not win]
 | 
			
		||||
  script_env:
 | 
			
		||||
    - CUDA_HOME
 | 
			
		||||
@ -57,7 +56,6 @@ test:
 | 
			
		||||
    - pandas
 | 
			
		||||
    - sqlalchemy
 | 
			
		||||
  commands:
 | 
			
		||||
    #pytest .
 | 
			
		||||
    python -m unittest discover -v -s tests -t .
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -116,7 +116,9 @@ class ImplicitronModelFactory(ModelFactoryBase):
 | 
			
		||||
                        "cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
 | 
			
		||||
                    }
 | 
			
		||||
                model_state_dict = torch.load(
 | 
			
		||||
                    model_io.get_model_path(model_path), map_location=map_location
 | 
			
		||||
                    model_io.get_model_path(model_path),
 | 
			
		||||
                    map_location=map_location,
 | 
			
		||||
                    weights_only=True,
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
                try:
 | 
			
		||||
 | 
			
		||||
@ -241,7 +241,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
 | 
			
		||||
                    map_location = {
 | 
			
		||||
                        "cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
 | 
			
		||||
                    }
 | 
			
		||||
                optimizer_state = torch.load(opt_path, map_location)
 | 
			
		||||
                optimizer_state = torch.load(opt_path, map_location, weights_only=True)
 | 
			
		||||
            else:
 | 
			
		||||
                raise FileNotFoundError(f"Optimizer state {opt_path} does not exist.")
 | 
			
		||||
        return optimizer_state
 | 
			
		||||
 | 
			
		||||
@ -84,9 +84,9 @@ def get_nerf_datasets(
 | 
			
		||||
 | 
			
		||||
    if autodownload and any(not os.path.isfile(p) for p in (cameras_path, image_path)):
 | 
			
		||||
        # Automatically download the data files if missing.
 | 
			
		||||
        download_data((dataset_name,), data_root=data_root)
 | 
			
		||||
        download_data([dataset_name], data_root=data_root)
 | 
			
		||||
 | 
			
		||||
    train_data = torch.load(cameras_path)
 | 
			
		||||
    train_data = torch.load(cameras_path, weights_only=True)
 | 
			
		||||
    n_cameras = train_data["cameras"]["R"].shape[0]
 | 
			
		||||
 | 
			
		||||
    _image_max_image_pixels = Image.MAX_IMAGE_PIXELS
 | 
			
		||||
 | 
			
		||||
@ -63,7 +63,7 @@ def main(cfg: DictConfig):
 | 
			
		||||
        raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")
 | 
			
		||||
 | 
			
		||||
    print(f"Loading checkpoint {checkpoint_path}.")
 | 
			
		||||
    loaded_data = torch.load(checkpoint_path)
 | 
			
		||||
    loaded_data = torch.load(checkpoint_path, weights_only=True)
 | 
			
		||||
    # Do not load the cached xy grid.
 | 
			
		||||
    # - this allows setting an arbitrary evaluation image size.
 | 
			
		||||
    state_dict = {
 | 
			
		||||
 | 
			
		||||
@ -77,7 +77,7 @@ def main(cfg: DictConfig):
 | 
			
		||||
        # Resume training if requested.
 | 
			
		||||
        if cfg.resume and os.path.isfile(checkpoint_path):
 | 
			
		||||
            print(f"Resuming from checkpoint {checkpoint_path}.")
 | 
			
		||||
            loaded_data = torch.load(checkpoint_path)
 | 
			
		||||
            loaded_data = torch.load(checkpoint_path, weights_only=True)
 | 
			
		||||
            model.load_state_dict(loaded_data["model"])
 | 
			
		||||
            stats = pickle.loads(loaded_data["stats"])
 | 
			
		||||
            print(f"   => resuming from epoch {stats.epoch}.")
 | 
			
		||||
 | 
			
		||||
@ -106,7 +106,7 @@ class ResNetFeatureExtractor(FeatureExtractorBase):
 | 
			
		||||
            self.layers = torch.nn.ModuleList()
 | 
			
		||||
            self.proj_layers = torch.nn.ModuleList()
 | 
			
		||||
            for stage in range(self.max_stage):
 | 
			
		||||
                stage_name = f"layer{stage+1}"
 | 
			
		||||
                stage_name = f"layer{stage + 1}"
 | 
			
		||||
                feature_name = self._get_resnet_stage_feature_name(stage)
 | 
			
		||||
                if (stage + 1) in self.stages:
 | 
			
		||||
                    if (
 | 
			
		||||
@ -139,7 +139,7 @@ class ResNetFeatureExtractor(FeatureExtractorBase):
 | 
			
		||||
        self.stages = set(self.stages)  # convert to set for faster "in"
 | 
			
		||||
 | 
			
		||||
    def _get_resnet_stage_feature_name(self, stage) -> str:
 | 
			
		||||
        return f"res_layer_{stage+1}"
 | 
			
		||||
        return f"res_layer_{stage + 1}"
 | 
			
		||||
 | 
			
		||||
    def _resnet_normalize_image(self, img: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
        return (img - self._resnet_mean) / self._resnet_std
 | 
			
		||||
 | 
			
		||||
@ -111,10 +111,10 @@ def load_model(fl, map_location: Optional[dict]):
 | 
			
		||||
    flstats = get_stats_path(fl)
 | 
			
		||||
    flmodel = get_model_path(fl)
 | 
			
		||||
    flopt = get_optimizer_path(fl)
 | 
			
		||||
    model_state_dict = torch.load(flmodel, map_location=map_location)
 | 
			
		||||
    model_state_dict = torch.load(flmodel, map_location=map_location, weights_only=True)
 | 
			
		||||
    stats = load_stats(flstats)
 | 
			
		||||
    if os.path.isfile(flopt):
 | 
			
		||||
        optimizer = torch.load(flopt, map_location=map_location)
 | 
			
		||||
        optimizer = torch.load(flopt, map_location=map_location, weights_only=True)
 | 
			
		||||
    else:
 | 
			
		||||
        optimizer = None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -163,9 +163,8 @@ def _read_chunks(
 | 
			
		||||
    if binary_data is not None:
 | 
			
		||||
        binary_data = np.frombuffer(binary_data, dtype=np.uint8)
 | 
			
		||||
 | 
			
		||||
    # pyre-fixme[7]: Expected `Optional[Tuple[Dict[str, typing.Any],
 | 
			
		||||
    #  ndarray[typing.Any, typing.Any]]]` but got `Tuple[typing.Any,
 | 
			
		||||
    #  Optional[ndarray[typing.Any, dtype[typing.Any]]]]`.
 | 
			
		||||
    assert binary_data is not None
 | 
			
		||||
 | 
			
		||||
    return json_data, binary_data
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1246,13 +1246,10 @@ def _save_ply(
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    color_np_type = np.ubyte if colors_as_uint8 else np.float32
 | 
			
		||||
    verts_dtype = [("verts", np.float32, 3)]
 | 
			
		||||
    verts_dtype: list = [("verts", np.float32, 3)]
 | 
			
		||||
    if verts_normals is not None:
 | 
			
		||||
        verts_dtype.append(("normals", np.float32, 3))
 | 
			
		||||
    if verts_colors is not None:
 | 
			
		||||
        # pyre-fixme[6]: For 1st argument expected `Tuple[str,
 | 
			
		||||
        #  Type[floating[_32Bit]], int]` but got `Tuple[str,
 | 
			
		||||
        #  Type[Union[floating[_32Bit], unsignedinteger[typing.Any]]], int]`.
 | 
			
		||||
        verts_dtype.append(("colors", color_np_type, 3))
 | 
			
		||||
 | 
			
		||||
    vert_data = np.zeros(verts.shape[0], dtype=verts_dtype)
 | 
			
		||||
 | 
			
		||||
@ -168,7 +168,7 @@ def _get_culled_faces(face_verts: torch.Tensor, frustum: ClipFrustum) -> torch.T
 | 
			
		||||
            position of the clipping planes.
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        faces_culled: An boolean tensor of size F specifying whether or not each face should be
 | 
			
		||||
        faces_culled: boolean tensor of size F specifying whether or not each face should be
 | 
			
		||||
            culled.
 | 
			
		||||
    """
 | 
			
		||||
    clipping_planes = (
 | 
			
		||||
 | 
			
		||||
@ -726,13 +726,15 @@ class TexturesUV(TexturesBase):
 | 
			
		||||
                    for each face
 | 
			
		||||
            verts_uvs: (N, V, 2) tensor giving the uv coordinates per vertex
 | 
			
		||||
                    (a FloatTensor with values between 0 and 1).
 | 
			
		||||
            maps_ids: Used if there are to be multiple maps per face. This can be either a list of map_ids [(F,)]
 | 
			
		||||
            maps_ids: Used if there are to be multiple maps per face.
 | 
			
		||||
                    This can be either a list of map_ids [(F,)]
 | 
			
		||||
                    or a long tensor of shape (N, F) giving the id of the texture map
 | 
			
		||||
                    for each face. If maps_ids is present, the maps has an extra dimension M
 | 
			
		||||
                    (so maps_padded is (N, M, H, W, C) and maps_list has elements of
 | 
			
		||||
                    shape (M, H, W, C)).
 | 
			
		||||
                    Specifically, the color
 | 
			
		||||
                    of a vertex V is given by an average of maps_padded[i, maps_ids[i, f], u, v, :]
 | 
			
		||||
                    of a vertex V is given by an average of
 | 
			
		||||
                       maps_padded[i, maps_ids[i, f], u, v, :]
 | 
			
		||||
                    over u and v integers adjacent to
 | 
			
		||||
                       _verts_uvs_padded[i, _faces_uvs_padded[i, f, 0], :] .
 | 
			
		||||
            align_corners: If true, the extreme values 0 and 1 for verts_uvs
 | 
			
		||||
@ -1237,7 +1239,8 @@ class TexturesUV(TexturesBase):
 | 
			
		||||
            texels = texels.reshape(N, K, C, H_out, W_out).permute(0, 3, 4, 1, 2)
 | 
			
		||||
            return texels
 | 
			
		||||
        else:
 | 
			
		||||
            # We have maps_ids_padded: (N, F), textures_map: (N, M, Hi, Wi, C),fragmenmts.pix_to_face: (N, Ho, Wo, K)
 | 
			
		||||
            # We have maps_ids_padded: (N, F), textures_map: (N, M, Hi, Wi, C),
 | 
			
		||||
            # fragments.pix_to_face: (N, Ho, Wo, K)
 | 
			
		||||
            # Get pixel_to_map_ids: (N, K, Ho, Wo) by indexing pix_to_face into maps_ids
 | 
			
		||||
            N, M, H_in, W_in, C = texture_maps.shape  # 3 for RGB
 | 
			
		||||
 | 
			
		||||
@ -1827,7 +1830,7 @@ class TexturesVertex(TexturesBase):
 | 
			
		||||
                representation) which overlap the pixel.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            texels: An texture per pixel of shape (N, H, W, K, C).
 | 
			
		||||
            texels: A texture per pixel of shape (N, H, W, K, C).
 | 
			
		||||
            There will be one C dimensional value for each element in
 | 
			
		||||
            fragments.pix_to_face.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
@ -246,7 +246,7 @@ class TestConfig(unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
        enable_get_default_args(Foo)
 | 
			
		||||
 | 
			
		||||
        @dataclass()
 | 
			
		||||
        @dataclass(frozen=True)
 | 
			
		||||
        class Bar:
 | 
			
		||||
            aa: int = 9
 | 
			
		||||
            bb: int = 9
 | 
			
		||||
 | 
			
		||||
@ -87,7 +87,9 @@ class CanineFrameDataBuilder(
 | 
			
		||||
        sequence_annotation: types.SequenceAnnotation,
 | 
			
		||||
        load_blobs: bool = True,
 | 
			
		||||
    ) -> CanineFrameData:
 | 
			
		||||
        frame_data = super().build(frame_annotation, sequence_annotation, load_blobs)
 | 
			
		||||
        frame_data = super().build(
 | 
			
		||||
            frame_annotation, sequence_annotation, load_blobs=load_blobs
 | 
			
		||||
        )
 | 
			
		||||
        frame_data.num_dogs = frame_annotation.num_dogs or 101
 | 
			
		||||
        frame_data.magnetic_field_average_flux_density = (
 | 
			
		||||
            frame_annotation.magnetic_field.average_flux_density
 | 
			
		||||
 | 
			
		||||
@ -76,7 +76,7 @@ class TestForward(unittest.TestCase):
 | 
			
		||||
                        "test_out",
 | 
			
		||||
                        "test_forward_TestForward_test_bg_weight_hits.png",
 | 
			
		||||
                    ),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).numpy(),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
 | 
			
		||||
                )
 | 
			
		||||
            self.assertEqual(hits[500, 500, 0].item(), 1.0)
 | 
			
		||||
            self.assertTrue(
 | 
			
		||||
@ -139,7 +139,7 @@ class TestForward(unittest.TestCase):
 | 
			
		||||
                        "test_out",
 | 
			
		||||
                        "test_forward_TestForward_test_basic_3chan_hits.png",
 | 
			
		||||
                    ),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).numpy(),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
 | 
			
		||||
                )
 | 
			
		||||
            self.assertEqual(hits[500, 500, 0].item(), 1.0)
 | 
			
		||||
            self.assertTrue(
 | 
			
		||||
@ -194,7 +194,7 @@ class TestForward(unittest.TestCase):
 | 
			
		||||
                        "test_out",
 | 
			
		||||
                        "test_forward_TestForward_test_basic_1chan.png",
 | 
			
		||||
                    ),
 | 
			
		||||
                    (result * 255.0).cpu().to(torch.uint8).numpy(),
 | 
			
		||||
                    (result * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
 | 
			
		||||
                )
 | 
			
		||||
                imageio.imsave(
 | 
			
		||||
                    path.join(
 | 
			
		||||
@ -202,7 +202,7 @@ class TestForward(unittest.TestCase):
 | 
			
		||||
                        "test_out",
 | 
			
		||||
                        "test_forward_TestForward_test_basic_1chan_hits.png",
 | 
			
		||||
                    ),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).numpy(),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
 | 
			
		||||
                )
 | 
			
		||||
            self.assertEqual(hits[500, 500, 0].item(), 1.0)
 | 
			
		||||
            self.assertTrue(
 | 
			
		||||
@ -264,7 +264,7 @@ class TestForward(unittest.TestCase):
 | 
			
		||||
                        "test_out",
 | 
			
		||||
                        "test_forward_TestForward_test_basic_8chan_hits.png",
 | 
			
		||||
                    ),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).numpy(),
 | 
			
		||||
                    (hits * 255.0).cpu().to(torch.uint8).squeeze(2).numpy(),
 | 
			
		||||
                )
 | 
			
		||||
            self.assertEqual(hits[500, 500, 0].item(), 1.0)
 | 
			
		||||
            self.assertTrue(
 | 
			
		||||
 | 
			
		||||
@ -43,7 +43,7 @@ class TestBuild(unittest.TestCase):
 | 
			
		||||
        tutorials = sorted(tutorials_dir.glob("*.ipynb"))
 | 
			
		||||
 | 
			
		||||
        for tutorial in tutorials:
 | 
			
		||||
            with open(tutorial) as f:
 | 
			
		||||
            with open(tutorial, encoding="utf8") as f:
 | 
			
		||||
                json.load(f)
 | 
			
		||||
 | 
			
		||||
    @unittest.skipIf(in_conda_build or in_re_worker, "In conda build, or RE worker")
 | 
			
		||||
 | 
			
		||||
@ -53,7 +53,7 @@ def _write(mesh, path, **kwargs) -> None:
 | 
			
		||||
    io.save_mesh(mesh, path, **kwargs)
 | 
			
		||||
 | 
			
		||||
    with open(path, "rb") as f:
 | 
			
		||||
        _, stored_length = _read_header(f)
 | 
			
		||||
        _, stored_length = _read_header(f)  # pyre-ignore
 | 
			
		||||
    assert stored_length == os.path.getsize(path)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -191,14 +191,14 @@ class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
        mesh = _load(glb, device=device)
 | 
			
		||||
 | 
			
		||||
        # save the mesh to a glb file
 | 
			
		||||
        glb = DATA_DIR / "cow_write.glb"
 | 
			
		||||
        _write(mesh, glb)
 | 
			
		||||
        glb_reload = DATA_DIR / "cow_write.glb"
 | 
			
		||||
        _write(mesh, glb_reload)
 | 
			
		||||
 | 
			
		||||
        # load again
 | 
			
		||||
        glb_reload = DATA_DIR / "cow_write.glb"
 | 
			
		||||
        self.assertTrue(glb_reload.is_file())
 | 
			
		||||
        device = torch.device("cuda:0")
 | 
			
		||||
        mesh_reload = _load(glb_reload, device=device)
 | 
			
		||||
        glb_reload.unlink()
 | 
			
		||||
 | 
			
		||||
        # assertions
 | 
			
		||||
        self.assertEqual(mesh_reload.faces_packed().shape, (5856, 3))
 | 
			
		||||
@ -232,6 +232,7 @@ class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
        # reload the ico_sphere
 | 
			
		||||
        device = torch.device("cuda:0")
 | 
			
		||||
        mesh_reload = _load(glb, device=device, include_textures=False)
 | 
			
		||||
        glb.unlink()
 | 
			
		||||
 | 
			
		||||
        self.assertClose(
 | 
			
		||||
            ico_sphere_mesh.verts_padded().cpu(),
 | 
			
		||||
@ -299,9 +300,9 @@ class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
        _write(mesh, glb)
 | 
			
		||||
 | 
			
		||||
        # reload the mesh glb file saved in TexturesVertex format
 | 
			
		||||
        glb = DATA_DIR / "cow_write_texturesvertex.glb"
 | 
			
		||||
        self.assertTrue(glb.is_file())
 | 
			
		||||
        mesh_dash = _load(glb, device=device)
 | 
			
		||||
        glb.unlink()
 | 
			
		||||
        self.assertEqual(len(mesh_dash), 1)
 | 
			
		||||
 | 
			
		||||
        self.assertEqual(mesh_dash.faces_packed().shape, (5856, 3))
 | 
			
		||||
@ -381,3 +382,4 @@ class TestMeshGltfIO(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
 | 
			
		||||
        glb = DATA_DIR / "example_write_texturesvertex.glb"
 | 
			
		||||
        _write(mesh, glb)
 | 
			
		||||
        glb.unlink()
 | 
			
		||||
 | 
			
		||||
@ -196,7 +196,7 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
        Generate a batch of `batch_size` cube meshes.
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        device = torch.device(device)
 | 
			
		||||
        device_ = torch.device(device)
 | 
			
		||||
 | 
			
		||||
        verts, faces = [], []
 | 
			
		||||
 | 
			
		||||
@ -213,7 +213,7 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                    [0.0, 0.0, 1.0],
 | 
			
		||||
                ],
 | 
			
		||||
                dtype=torch.float32,
 | 
			
		||||
                device=device,
 | 
			
		||||
                device=device_,
 | 
			
		||||
            )
 | 
			
		||||
            verts.append(v)
 | 
			
		||||
            faces.append(
 | 
			
		||||
@ -233,7 +233,7 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                        [0, 1, 6],
 | 
			
		||||
                    ],
 | 
			
		||||
                    dtype=torch.int64,
 | 
			
		||||
                    device=device,
 | 
			
		||||
                    device=device_,
 | 
			
		||||
                )
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
@ -316,7 +316,7 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                            outfile = (
 | 
			
		||||
                                outdir
 | 
			
		||||
                                + f"/rgb_{interp_mode}"
 | 
			
		||||
                                + f"_{str(volume_size).replace(' ','')}"
 | 
			
		||||
                                + f"_{str(volume_size).replace(' ', '')}"
 | 
			
		||||
                                + f"_{vidx:003d}_sldim{slice_dim}.png"
 | 
			
		||||
                            )
 | 
			
		||||
                            im.save(outfile)
 | 
			
		||||
 | 
			
		||||
@ -639,4 +639,4 @@ class TestRaysampling(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                                origin1, origin2, rtol=1e-4, atol=1e-4
 | 
			
		||||
                            ) == (id1 == id2), (origin1, origin2, id1, id2)
 | 
			
		||||
                            assert not torch.allclose(dir1, dir2), (dir1, dir2)
 | 
			
		||||
                            self.assertClose(len1, len2), (len1, len2)
 | 
			
		||||
                            self.assertClose(len1, len2)
 | 
			
		||||
 | 
			
		||||
@ -689,7 +689,7 @@ class TestRenderVolumes(TestCaseMixin, unittest.TestCase):
 | 
			
		||||
                            outfile = (
 | 
			
		||||
                                outdir
 | 
			
		||||
                                + f"/rgb_{sample_mode}"
 | 
			
		||||
                                + f"_{str(volume_size).replace(' ','')}"
 | 
			
		||||
                                + f"_{str(volume_size).replace(' ', '')}"
 | 
			
		||||
                                + f"_{imidx:003d}"
 | 
			
		||||
                            )
 | 
			
		||||
                            if image_ is image:
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user