mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: - followup recent pyre change D63415925 - make tests remove temporary files - weights_only=True in torch.load - lint fixes 3 test fixes from VRehnberg in https://github.com/facebookresearch/pytorch3d/issues/1914 - imageio channels fix - frozen decorator in test_config - load_blobs positional Reviewed By: MichaelRamamonjisoa Differential Revision: D66162167 fbshipit-source-id: 7737e174691b62f1708443a4fae07343cec5bfeb
274 lines
9.3 KiB
Python
274 lines
9.3 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
import collections
|
|
import os
|
|
import pickle
|
|
import warnings
|
|
|
|
import hydra
|
|
import numpy as np
|
|
import torch
|
|
from nerf.dataset import get_nerf_datasets, trivial_collate
|
|
from nerf.nerf_renderer import RadianceFieldRenderer, visualize_nerf_outputs
|
|
from nerf.stats import Stats
|
|
from omegaconf import DictConfig
|
|
from visdom import Visdom
|
|
|
|
|
|
CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs")
|
|
|
|
|
|
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
|
|
def main(cfg: DictConfig):
|
|
|
|
# Set the relevant seeds for reproducibility.
|
|
np.random.seed(cfg.seed)
|
|
torch.manual_seed(cfg.seed)
|
|
|
|
# Device on which to run.
|
|
if torch.cuda.is_available():
|
|
device = "cuda"
|
|
else:
|
|
warnings.warn(
|
|
"Please note that although executing on CPU is supported,"
|
|
+ "the training is unlikely to finish in reasonable time."
|
|
)
|
|
device = "cpu"
|
|
|
|
# Initialize the Radiance Field model.
|
|
model = RadianceFieldRenderer(
|
|
image_size=cfg.data.image_size,
|
|
n_pts_per_ray=cfg.raysampler.n_pts_per_ray,
|
|
n_pts_per_ray_fine=cfg.raysampler.n_pts_per_ray,
|
|
n_rays_per_image=cfg.raysampler.n_rays_per_image,
|
|
min_depth=cfg.raysampler.min_depth,
|
|
max_depth=cfg.raysampler.max_depth,
|
|
stratified=cfg.raysampler.stratified,
|
|
stratified_test=cfg.raysampler.stratified_test,
|
|
chunk_size_test=cfg.raysampler.chunk_size_test,
|
|
n_harmonic_functions_xyz=cfg.implicit_function.n_harmonic_functions_xyz,
|
|
n_harmonic_functions_dir=cfg.implicit_function.n_harmonic_functions_dir,
|
|
n_hidden_neurons_xyz=cfg.implicit_function.n_hidden_neurons_xyz,
|
|
n_hidden_neurons_dir=cfg.implicit_function.n_hidden_neurons_dir,
|
|
n_layers_xyz=cfg.implicit_function.n_layers_xyz,
|
|
density_noise_std=cfg.implicit_function.density_noise_std,
|
|
visualization=cfg.visualization.visdom,
|
|
)
|
|
|
|
# Move the model to the relevant device.
|
|
model.to(device)
|
|
|
|
# Init stats to None before loading.
|
|
stats = None
|
|
optimizer_state_dict = None
|
|
start_epoch = 0
|
|
|
|
checkpoint_path = os.path.join(hydra.utils.get_original_cwd(), cfg.checkpoint_path)
|
|
if len(cfg.checkpoint_path) > 0:
|
|
# Make the root of the experiment directory.
|
|
checkpoint_dir = os.path.split(checkpoint_path)[0]
|
|
os.makedirs(checkpoint_dir, exist_ok=True)
|
|
|
|
# Resume training if requested.
|
|
if cfg.resume and os.path.isfile(checkpoint_path):
|
|
print(f"Resuming from checkpoint {checkpoint_path}.")
|
|
loaded_data = torch.load(checkpoint_path, weights_only=True)
|
|
model.load_state_dict(loaded_data["model"])
|
|
stats = pickle.loads(loaded_data["stats"])
|
|
print(f" => resuming from epoch {stats.epoch}.")
|
|
optimizer_state_dict = loaded_data["optimizer"]
|
|
start_epoch = stats.epoch
|
|
|
|
# Initialize the optimizer.
|
|
optimizer = torch.optim.Adam(
|
|
model.parameters(),
|
|
lr=cfg.optimizer.lr,
|
|
)
|
|
|
|
# Load the optimizer state dict in case we are resuming.
|
|
if optimizer_state_dict is not None:
|
|
optimizer.load_state_dict(optimizer_state_dict)
|
|
optimizer.last_epoch = start_epoch
|
|
|
|
# Init the stats object.
|
|
if stats is None:
|
|
stats = Stats(
|
|
["loss", "mse_coarse", "mse_fine", "psnr_coarse", "psnr_fine", "sec/it"],
|
|
)
|
|
|
|
# Learning rate scheduler setup.
|
|
|
|
# Following the original code, we use exponential decay of the
|
|
# learning rate: current_lr = base_lr * gamma ** (epoch / step_size)
|
|
def lr_lambda(epoch):
|
|
return cfg.optimizer.lr_scheduler_gamma ** (
|
|
epoch / cfg.optimizer.lr_scheduler_step_size
|
|
)
|
|
|
|
# The learning rate scheduling is implemented with LambdaLR PyTorch scheduler.
|
|
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
|
|
optimizer, lr_lambda, last_epoch=start_epoch - 1, verbose=False
|
|
)
|
|
|
|
# Initialize the cache for storing variables needed for visualization.
|
|
visuals_cache = collections.deque(maxlen=cfg.visualization.history_size)
|
|
|
|
# Init the visualization visdom env.
|
|
if cfg.visualization.visdom:
|
|
viz = Visdom(
|
|
server=cfg.visualization.visdom_server,
|
|
port=cfg.visualization.visdom_port,
|
|
use_incoming_socket=False,
|
|
)
|
|
else:
|
|
viz = None
|
|
|
|
# Load the training/validation data.
|
|
train_dataset, val_dataset, _ = get_nerf_datasets(
|
|
dataset_name=cfg.data.dataset_name,
|
|
image_size=cfg.data.image_size,
|
|
)
|
|
|
|
if cfg.data.precache_rays:
|
|
# Precache the projection rays.
|
|
model.eval()
|
|
with torch.no_grad():
|
|
for dataset in (train_dataset, val_dataset):
|
|
cache_cameras = [e["camera"].to(device) for e in dataset]
|
|
cache_camera_hashes = [e["camera_idx"] for e in dataset]
|
|
model.precache_rays(cache_cameras, cache_camera_hashes)
|
|
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset,
|
|
batch_size=1,
|
|
shuffle=True,
|
|
num_workers=0,
|
|
collate_fn=trivial_collate,
|
|
)
|
|
|
|
# The validation dataloader is just an endless stream of random samples.
|
|
val_dataloader = torch.utils.data.DataLoader(
|
|
val_dataset,
|
|
batch_size=1,
|
|
num_workers=0,
|
|
collate_fn=trivial_collate,
|
|
sampler=torch.utils.data.RandomSampler(
|
|
val_dataset,
|
|
replacement=True,
|
|
num_samples=cfg.optimizer.max_epochs,
|
|
),
|
|
)
|
|
|
|
# Set the model to the training mode.
|
|
model.train()
|
|
|
|
# Run the main training loop.
|
|
for epoch in range(start_epoch, cfg.optimizer.max_epochs):
|
|
stats.new_epoch() # Init a new epoch.
|
|
for iteration, batch in enumerate(train_dataloader):
|
|
image, camera, camera_idx = batch[0].values()
|
|
image = image.to(device)
|
|
camera = camera.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
# Run the forward pass of the model.
|
|
nerf_out, metrics = model(
|
|
camera_idx if cfg.data.precache_rays else None,
|
|
camera,
|
|
image,
|
|
)
|
|
|
|
# The loss is a sum of coarse and fine MSEs
|
|
loss = metrics["mse_coarse"] + metrics["mse_fine"]
|
|
|
|
# Take the training step.
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
# Update stats with the current metrics.
|
|
stats.update(
|
|
{"loss": float(loss), **metrics},
|
|
stat_set="train",
|
|
)
|
|
|
|
if iteration % cfg.stats_print_interval == 0:
|
|
stats.print(stat_set="train")
|
|
|
|
# Update the visualization cache.
|
|
if viz is not None:
|
|
visuals_cache.append(
|
|
{
|
|
"camera": camera.cpu(),
|
|
"camera_idx": camera_idx,
|
|
"image": image.cpu().detach(),
|
|
"rgb_fine": nerf_out["rgb_fine"].cpu().detach(),
|
|
"rgb_coarse": nerf_out["rgb_coarse"].cpu().detach(),
|
|
"rgb_gt": nerf_out["rgb_gt"].cpu().detach(),
|
|
"coarse_ray_bundle": nerf_out["coarse_ray_bundle"],
|
|
}
|
|
)
|
|
|
|
# Adjust the learning rate.
|
|
lr_scheduler.step()
|
|
|
|
# Validation
|
|
if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:
|
|
|
|
# Sample a validation camera/image.
|
|
val_batch = next(val_dataloader.__iter__())
|
|
val_image, val_camera, camera_idx = val_batch[0].values()
|
|
val_image = val_image.to(device)
|
|
val_camera = val_camera.to(device)
|
|
|
|
# Activate eval mode of the model (lets us do a full rendering pass).
|
|
model.eval()
|
|
with torch.no_grad():
|
|
val_nerf_out, val_metrics = model(
|
|
camera_idx if cfg.data.precache_rays else None,
|
|
val_camera,
|
|
val_image,
|
|
)
|
|
|
|
# Update stats with the validation metrics.
|
|
stats.update(val_metrics, stat_set="val")
|
|
stats.print(stat_set="val")
|
|
|
|
if viz is not None:
|
|
# Plot that loss curves into visdom.
|
|
stats.plot_stats(
|
|
viz=viz,
|
|
visdom_env=cfg.visualization.visdom_env,
|
|
plot_file=None,
|
|
)
|
|
# Visualize the intermediate results.
|
|
visualize_nerf_outputs(
|
|
val_nerf_out, visuals_cache, viz, cfg.visualization.visdom_env
|
|
)
|
|
|
|
# Set the model back to train mode.
|
|
model.train()
|
|
|
|
# Checkpoint.
|
|
if (
|
|
epoch % cfg.checkpoint_epoch_interval == 0
|
|
and len(cfg.checkpoint_path) > 0
|
|
and epoch > 0
|
|
):
|
|
print(f"Storing checkpoint {checkpoint_path}.")
|
|
data_to_store = {
|
|
"model": model.state_dict(),
|
|
"optimizer": optimizer.state_dict(),
|
|
"stats": pickle.dumps(stats),
|
|
}
|
|
torch.save(data_to_store, checkpoint_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|