test fixes and lints

Summary:
- followup recent pyre change D63415925
- make tests remove temporary files
- weights_only=True in torch.load
- lint fixes

3 test fixes from VRehnberg in https://github.com/facebookresearch/pytorch3d/issues/1914
- imageio channels fix
- frozen decorator in test_config
- load_blobs positional

Reviewed By: MichaelRamamonjisoa

Differential Revision: D66162167

fbshipit-source-id: 7737e174691b62f1708443a4fae07343cec5bfeb
This commit is contained in:
Jeremy Reizenstein
2024-11-20 09:15:51 -08:00
committed by Facebook GitHub Bot
parent c17e6f947a
commit e20cbe9b0e
21 changed files with 48 additions and 45 deletions

View File

@@ -116,7 +116,9 @@ class ImplicitronModelFactory(ModelFactoryBase):
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
model_state_dict = torch.load(
model_io.get_model_path(model_path), map_location=map_location
model_io.get_model_path(model_path),
map_location=map_location,
weights_only=True,
)
try:

View File

@@ -241,7 +241,7 @@ class ImplicitronOptimizerFactory(OptimizerFactoryBase):
map_location = {
"cuda:%d" % 0: "cuda:%d" % accelerator.local_process_index
}
optimizer_state = torch.load(opt_path, map_location)
optimizer_state = torch.load(opt_path, map_location, weights_only=True)
else:
raise FileNotFoundError(f"Optimizer state {opt_path} does not exist.")
return optimizer_state

View File

@@ -84,9 +84,9 @@ def get_nerf_datasets(
if autodownload and any(not os.path.isfile(p) for p in (cameras_path, image_path)):
# Automatically download the data files if missing.
download_data((dataset_name,), data_root=data_root)
download_data([dataset_name], data_root=data_root)
train_data = torch.load(cameras_path)
train_data = torch.load(cameras_path, weights_only=True)
n_cameras = train_data["cameras"]["R"].shape[0]
_image_max_image_pixels = Image.MAX_IMAGE_PIXELS

View File

@@ -63,7 +63,7 @@ def main(cfg: DictConfig):
raise ValueError(f"Model checkpoint {checkpoint_path} does not exist!")
print(f"Loading checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
# Do not load the cached xy grid.
# - this allows setting an arbitrary evaluation image size.
state_dict = {

View File

@@ -77,7 +77,7 @@ def main(cfg: DictConfig):
# Resume training if requested.
if cfg.resume and os.path.isfile(checkpoint_path):
print(f"Resuming from checkpoint {checkpoint_path}.")
loaded_data = torch.load(checkpoint_path)
loaded_data = torch.load(checkpoint_path, weights_only=True)
model.load_state_dict(loaded_data["model"])
stats = pickle.loads(loaded_data["stats"])
print(f" => resuming from epoch {stats.epoch}.")