Blending fixes and test updates

Summary:
Changed `torch.cumprod` to `torch.prod` in blending functions and added more tests and benchmark tests.

This should fix the issue raised on GitHub.

Reviewed By: gkioxari

Differential Revision: D20163073

fbshipit-source-id: 4569fd37be11aa4435a3ce8736b55622c00ec718
This commit is contained in:
Nikhila Ravi 2020-02-29 17:49:14 -08:00 committed by Facebook Github Bot
parent ff19c642cb
commit ba11c0b59c
3 changed files with 312 additions and 95 deletions

View File

@ -45,7 +45,7 @@ def sigmoid_alpha_blend(colors, fragments, blend_params) -> torch.Tensor:
"""
Silhouette blending to return an RGBA image
- **RGB** - choose color of the closest point.
- **A** - blend based on the 2D distance based probability map [0].
- **A** - blend based on the 2D distance based probability map [1].
Args:
colors: (N, H, W, K, 3) RGB color for each of the top K faces per pixel.
@ -60,7 +60,7 @@ def sigmoid_alpha_blend(colors, fragments, blend_params) -> torch.Tensor:
Returns:
RGBA pixel_colors: (N, H, W, 4)
[0] Liu et al, 'Soft Rasterizer: A Differentiable Renderer for Image-based
[1] Liu et al, 'Soft Rasterizer: A Differentiable Renderer for Image-based
3D Reasoning', ICCV 2019
"""
N, H, W, K = fragments.pix_to_face.shape
@ -73,20 +73,13 @@ def sigmoid_alpha_blend(colors, fragments, blend_params) -> torch.Tensor:
# the face. Therefore use -1.0 * fragments.dists to get the correct sign.
prob = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask
# The cumulative product ensures that alpha will be 1 if at least 1 face
# fully covers the pixel as for that face prob will be 1.0
# TODO: investigate why torch.cumprod backwards is very slow for large
# values of K.
# Temporarily replace this with exp(sum(log))) using the fact that
# a*b = exp(log(a*b)) = exp(log(a) + log(b))
# alpha = 1.0 - torch.cumprod((1.0 - prob), dim=-1)[..., -1]
alpha = 1.0 - torch.exp(torch.log((1.0 - prob)).sum(dim=-1))
# The cumulative product ensures that alpha will be 0.0 if at least 1
# face fully covers the pixel as for that face, prob will be 1.0.
# This results in a multiplication by 0.0 because of the (1.0 - prob)
# term. Therefore 1.0 - alpha will be 1.0.
alpha = torch.prod((1.0 - prob), dim=-1)
pixel_colors[..., :3] = colors[..., 0, :] # Hard assign for RGB
pixel_colors[..., 3] = alpha
pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
pixel_colors[..., 3] = 1.0 - alpha
return torch.flip(pixel_colors, [1])
@ -95,7 +88,7 @@ def softmax_rgb_blend(
) -> torch.Tensor:
"""
RGB and alpha channel blending to return an RGBA image based on the method
proposed in [0]
proposed in [1]
- **RGB** - blend the colors based on the 2D distance based probability map and
relative z distances.
- **A** - blend based on the 2D distance based probability map.
@ -151,15 +144,11 @@ def softmax_rgb_blend(
# Sigmoid probability map based on the distance of the pixel to the face.
prob_map = torch.sigmoid(-fragments.dists / blend_params.sigma) * mask
# The cumulative product ensures that alpha will be 1 if at least 1 face
# fully covers the pixel as for that face prob will be 1.0
# TODO: investigate why torch.cumprod backwards is very slow for large
# values of K.
# Temporarily replace this with exp(sum(log))) using the fact that
# a*b = exp(log(a*b)) = exp(log(a) + log(b))
# alpha = 1.0 - torch.cumprod((1.0 - prob), dim=-1)[..., -1]
alpha = 1.0 - torch.exp(torch.log((1.0 - prob_map)).sum(dim=-1))
# The cumulative product ensures that alpha will be 0.0 if at least 1
# face fully covers the pixel as for that face, prob will be 1.0.
# This results in a multiplication by 0.0 because of the (1.0 - prob)
# term. Therefore 1.0 - alpha will be 1.0.
alpha = torch.prod((1.0 - prob_map), dim=-1)
# Weights for each face. Adjust the exponential by the max z to prevent
# overflow. zbuf shape (N, H, W, K), find max over K.
@ -178,8 +167,6 @@ def softmax_rgb_blend(
weighted_colors = (weights[..., None] * colors).sum(dim=-2)
weighted_background = (delta / denom) * background
pix_colors[..., :3] = weighted_colors + weighted_background
pix_colors[..., 3] = alpha
pix_colors[..., 3] = 1.0 - alpha
# Clamp colors to the range 0-1 and flip y axis.
pix_colors = torch.clamp(pix_colors, min=0, max=1.0)
return torch.flip(pix_colors, [1])

42
tests/bm_blending.py Normal file
View File

@ -0,0 +1,42 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from itertools import product
from fvcore.common.benchmark import benchmark
from test_blending import TestBlending
def bm_blending() -> None:
devices = ["cpu", "cuda"]
kwargs_list = []
num_meshes = [16]
image_size = [128, 256]
faces_per_pixel = [50, 100]
test_cases = product(num_meshes, image_size, faces_per_pixel, devices)
for case in test_cases:
n, s, k, d = case
kwargs_list.append(
{
"num_meshes": n,
"image_size": s,
"faces_per_pixel": k,
"device": d,
}
)
benchmark(
TestBlending.bm_sigmoid_alpha_blending,
"SIGMOID_ALPHA_BLENDING_PYTORCH",
kwargs_list,
warmup_iters=1,
)
benchmark(
TestBlending.bm_softmax_blending,
"SOFTMAX_BLENDING_PYTORCH",
kwargs_list,
warmup_iters=1,
)

View File

@ -14,7 +14,7 @@ from pytorch3d.renderer.blending import (
from pytorch3d.renderer.mesh.rasterizer import Fragments
def sigmoid_blend_naive(colors, fragments, blend_params):
def sigmoid_blend_naive_loop(colors, fragments, blend_params):
"""
Naive for loop based implementation of distance based alpha calculation.
Only for test purposes.
@ -41,10 +41,38 @@ def sigmoid_blend_naive(colors, fragments, blend_params):
pixel_colors[n, h, w, :3] = colors[n, h, w, 0, :]
pixel_colors[n, h, w, 3] = 1.0 - alpha
pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
return torch.flip(pixel_colors, [1])
def sigmoid_blend_naive_loop_backward(
grad_images, images, fragments, blend_params
):
pix_to_face = fragments.pix_to_face
dists = fragments.dists
sigma = blend_params.sigma
N, H, W, K = pix_to_face.shape
device = pix_to_face.device
grad_distances = torch.zeros((N, H, W, K), dtype=dists.dtype, device=device)
images = torch.flip(images, [1])
grad_images = torch.flip(grad_images, [1])
for n in range(N):
for h in range(H):
for w in range(W):
alpha = 1.0 - images[n, h, w, 3]
grad_alpha = grad_images[n, h, w, 3]
# Loop over k faces and calculate 2D distance based probability
# map.
for k in range(K):
if pix_to_face[n, h, w, k] >= 0:
prob = torch.sigmoid(-dists[n, h, w, k] / sigma)
grad_distances[n, h, w, k] = (
grad_alpha * (-1.0 / sigma) * prob * alpha
)
return grad_distances
def softmax_blend_naive(colors, fragments, blend_params):
"""
Naive for loop based implementation of softmax blending.
@ -76,7 +104,7 @@ def softmax_blend_naive(colors, fragments, blend_params):
for h in range(H):
for w in range(W):
alpha = 1.0
weights_k = torch.zeros(K)
weights_k = torch.zeros(K, device=device)
zmax = 0.0
# Loop over K to find max z.
@ -102,7 +130,6 @@ def softmax_blend_naive(colors, fragments, blend_params):
pixel_colors[n, h, w, :3] += (delta / denom) * bk_color
pixel_colors[n, h, w, 3] = 1.0 - alpha
pixel_colors = torch.clamp(pixel_colors, min=0, max=1.0)
return torch.flip(pixel_colors, [1])
@ -110,6 +137,37 @@ class TestBlending(unittest.TestCase):
def setUp(self) -> None:
torch.manual_seed(42)
def _compare_impls(
self,
fn1,
fn2,
args1,
args2,
grad_var1=None,
grad_var2=None,
compare_grads=True,
):
out1 = fn1(*args1)
out2 = fn2(*args2)
self.assertTrue(torch.allclose(out1.cpu(), out2.cpu(), atol=1e-7))
# Check gradients
if not compare_grads:
return
grad_out = torch.randn_like(out1)
(out1 * grad_out).sum().backward()
self.assertTrue(hasattr(grad_var1, "grad"))
(out2 * grad_out).sum().backward()
self.assertTrue(hasattr(grad_var2, "grad"))
self.assertTrue(
torch.allclose(
grad_var1.grad.cpu(), grad_var2.grad.cpu(), atol=2e-5
)
)
def test_hard_rgb_blend(self):
N, H, W, K = 5, 10, 10, 20
pix_to_face = torch.ones((N, H, W, K))
@ -129,116 +187,246 @@ class TestBlending(unittest.TestCase):
expected_vals[..., :3] = pix_cols
self.assertTrue(torch.allclose(images, expected_vals))
def test_sigmoid_alpha_blend(self):
"""
Test outputs of sigmoid alpha blend tensorised function match those of
the naive iterative version. Also check gradients match.
"""
def test_sigmoid_alpha_blend_manual_gradients(self):
# Create dummy outputs of rasterization
torch.manual_seed(231)
F = 32 # number of faces in the mesh
# The python loop version is really slow so only using small input sizes.
N, S, K = 2, 3, 2
device = torch.device("cuda")
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
# Create dummy outputs of rasterization simulating a cube in the centre
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
h = int(S / 2)
pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
s = int(S / 4)
e = int(0.75 * S)
pix_to_face[:, s:e, s:e, :] = pix_to_face_full
bary_coords = torch.ones((N, S, S, K, 3))
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
# # randomly flip the sign of the distance
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists = torch.randn(size=(N, S, S, K))
dists1 = dists * random_sign_flip
dists2 = dists1.clone()
dists1.requires_grad = True
dists = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists,
)
blend_params = BlendParams(sigma=1e-3)
pix_cols = sigmoid_blend_naive_loop(colors, fragments, blend_params)
grad_out = torch.randn_like(pix_cols)
# Backward pass
pix_cols.backward(grad_out)
grad_dists = sigmoid_blend_naive_loop_backward(
grad_out, pix_cols, fragments, blend_params
)
self.assertTrue(torch.allclose(dists.grad, grad_dists, atol=1e-7))
def test_sigmoid_alpha_blend_python(self):
"""
Test outputs of python tensorised function and python loop
"""
# Create dummy outputs of rasterization
torch.manual_seed(231)
F = 32 # number of faces in the mesh
# The python loop version is really slow so only using small input sizes.
N, S, K = 2, 10, 5
device = torch.device("cuda")
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
# # randomly flip the sign of the distance
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
dists2 = dists1.detach().clone()
dists2.requires_grad = True
colors = torch.randn_like(bary_coords)
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=pix_to_face, # dummy
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
zbuf=pix_to_face, # dummy
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists2,
)
blend_params = BlendParams(sigma=2e-1)
images = sigmoid_alpha_blend(colors, fragments1, blend_params)
images_naive = sigmoid_blend_naive(colors, fragments2, blend_params)
self.assertTrue(torch.allclose(images, images_naive))
torch.manual_seed(231)
images.sum().backward()
self.assertTrue(hasattr(dists1, "grad"))
images_naive.sum().backward()
self.assertTrue(hasattr(dists2, "grad"))
blend_params = BlendParams(sigma=1e-2)
args1 = (colors, fragments1, blend_params)
args2 = (colors, fragments2, blend_params)
self.assertTrue(torch.allclose(dists1.grad, dists2.grad, rtol=1e-5))
self._compare_impls(
sigmoid_alpha_blend,
sigmoid_blend_naive_loop,
args1,
args2,
dists1,
dists2,
compare_grads=True,
)
def test_softmax_rgb_blend(self):
# Create dummy outputs of rasterization simulating a cube in the centre
# of the image with surrounding padded values.
N, S, K = 1, 8, 2
pix_to_face = -torch.ones((N, S, S, K), dtype=torch.int64)
device = torch.device("cuda")
pix_to_face = -torch.ones(
(N, S, S, K), dtype=torch.int64, device=device
)
h = int(S / 2)
pix_to_face_full = torch.randint(size=(N, h, h, K), low=0, high=100)
pix_to_face_full = torch.randint(
size=(N, h, h, K), low=0, high=100, device=device
)
s = int(S / 4)
e = int(0.75 * S)
pix_to_face[:, s:e, s:e, :] = pix_to_face_full
bary_coords = torch.ones((N, S, S, K, 3))
empty = torch.tensor([], device=device)
random_sign_flip = torch.rand((N, S, S, K))
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
zbuf1 = torch.randn(size=(N, S, S, K))
zbuf1 = torch.randn(size=(N, S, S, K), device=device)
# randomly flip the sign of the distance
# (-) means inside triangle, (+) means outside triangle.
dists1 = torch.randn(size=(N, S, S, K)) * random_sign_flip
dists1 = (
torch.randn(size=(N, S, S, K), device=device) * random_sign_flip
)
dists2 = dists1.clone()
zbuf2 = zbuf1.clone()
dists1.requires_grad = True
dists2.requires_grad = True
zbuf1.requires_grad = True
zbuf2.requires_grad = True
colors = torch.randn_like(bary_coords)
colors = torch.randn((N, S, S, K, 3), device=device)
fragments1 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
bary_coords=empty, # dummy
zbuf=zbuf1,
dists=dists1,
)
fragments2 = Fragments(
pix_to_face=pix_to_face,
bary_coords=bary_coords, # dummy
bary_coords=empty, # dummy
zbuf=zbuf2,
dists=dists2,
)
blend_params = BlendParams(sigma=1e-1)
images = softmax_rgb_blend(colors, fragments1, blend_params)
images_naive = softmax_blend_naive(colors, fragments2, blend_params)
self.assertTrue(torch.allclose(images, images_naive))
# Check gradients.
images.sum().backward()
self.assertTrue(hasattr(dists1, "grad"))
self.assertTrue(hasattr(zbuf1, "grad"))
images_naive.sum().backward()
self.assertTrue(hasattr(dists2, "grad"))
self.assertTrue(hasattr(zbuf2, "grad"))
blend_params = BlendParams(sigma=1e-3)
args1 = (colors, fragments1, blend_params)
args2 = (colors, fragments2, blend_params)
self._compare_impls(
softmax_rgb_blend,
softmax_blend_naive,
args1,
args2,
dists1,
dists2,
compare_grads=True,
)
self.assertTrue(torch.allclose(dists1.grad, dists2.grad, atol=2e-5))
self.assertTrue(torch.allclose(zbuf1.grad, zbuf2.grad, atol=2e-5))
@staticmethod
def bm_sigmoid_alpha_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 100,
device: str = "cpu",
):
if torch.cuda.is_available() and "cuda:" in device:
# If a device other than the default is used, set the device explicity.
torch.cuda.set_device(device)
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
# # randomly flip the sign of the distance
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=empty, # dummy
dists=dists1,
)
blend_params = BlendParams(sigma=1e-3)
torch.cuda.synchronize()
def fn():
# test forward and backward pass
images = sigmoid_alpha_blend(colors, fragments, blend_params)
images.sum().backward()
torch.cuda.synchronize()
return fn
@staticmethod
def bm_softmax_blending(
num_meshes: int = 16,
image_size: int = 128,
faces_per_pixel: int = 100,
device: str = "cpu",
):
if torch.cuda.is_available() and "cuda:" in device:
# If a device other than the default is used, set the device explicity.
torch.cuda.set_device(device)
device = torch.device(device)
torch.manual_seed(231)
# Create dummy outputs of rasterization
N, S, K = num_meshes, image_size, faces_per_pixel
F = 32 # num faces in the mesh
pix_to_face = torch.randint(F + 1, size=(N, S, S, K), device=device) - 1
colors = torch.randn((N, S, S, K, 3), device=device)
empty = torch.tensor([], device=device)
# # randomly flip the sign of the distance
# # (-) means inside triangle, (+) means outside triangle.
random_sign_flip = torch.rand((N, S, S, K), device=device)
random_sign_flip[random_sign_flip > 0.5] *= -1.0
dists1 = torch.randn(
size=(N, S, S, K), requires_grad=True, device=device
)
zbuf = torch.randn(size=(N, S, S, K), requires_grad=True, device=device)
fragments = Fragments(
pix_to_face=pix_to_face,
bary_coords=empty, # dummy
zbuf=zbuf,
dists=dists1,
)
blend_params = BlendParams(sigma=1e-3)
torch.cuda.synchronize()
def fn():
# test forward and backward pass
images = softmax_rgb_blend(colors, fragments, blend_params)
images.sum().backward()
torch.cuda.synchronize()
return fn
def test_blend_params(self):
"""Test colour parameter of BlendParams().
Assert passed value overrides default value.
"""
Assert passed value overrides default value.
"""
bp_default = BlendParams()
bp_new = BlendParams(background_color=(0.5, 0.5, 0.5))
self.assertEqual(bp_new.background_color, (0.5, 0.5, 0.5))