work with old linalg

Summary: solve and lstsq have moved around in torch. Cope with both.

Reviewed By: patricklabatut

Differential Revision: D29302316

fbshipit-source-id: b34f0b923e90a357f20df359635929241eba6e74
This commit is contained in:
Jeremy Reizenstein
2021-06-28 06:30:27 -07:00
committed by Facebook GitHub Bot
parent 5284de6e97
commit b8790474f1
7 changed files with 65 additions and 14 deletions

View File

@@ -0,0 +1,51 @@
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from typing import Tuple
import torch
"""
Some functions which depend on PyTorch versions.
"""
def solve(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: # pragma: no cover
"""
Like torch.linalg.solve, tries to return X
such that AX=B, with A square.
"""
if hasattr(torch.linalg, "solve"):
# PyTorch version >= 1.8.0
return torch.linalg.solve(A, B)
return torch.solve(B, A).solution
def lstsq(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: # pragma: no cover
"""
Like torch.linalg.lstsq, tries to return X
such that AX=B.
"""
if hasattr(torch.linalg, "lstsq"):
# PyTorch version >= 1.9
return torch.linalg.lstsq(A, B).solution
solution = torch.lstsq(B, A).solution
if A.shape[1] < A.shape[0]:
return solution[: A.shape[1]]
return solution
def qr(A: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: # pragma: no cover
"""
Like torch.linalg.qr.
"""
if hasattr(torch.linalg, "qr"):
# PyTorch version >= 1.9
return torch.linalg.qr(A)
return torch.qr(A)

View File

@@ -26,8 +26,8 @@ from .rotation_conversions import (
)
from .se3 import se3_exp_map, se3_log_map
from .so3 import (
so3_exponential_map,
so3_exp_map,
so3_exponential_map,
so3_log_map,
so3_relative_angle,
so3_rotation_angle,

View File

@@ -5,8 +5,9 @@
# LICENSE file in the root directory of this source tree.
import torch
from pytorch3d.common.compat import solve
from .so3 import hat, _so3_exp_map, so3_log_map
from .so3 import _so3_exp_map, hat, so3_log_map
def se3_exp_map(log_transform: torch.Tensor, eps: float = 1e-4) -> torch.Tensor:
@@ -173,7 +174,7 @@ def se3_log_map(
# log_translation is V^-1 @ T
T = transform[:, 3, :3]
V = _se3_V_matrix(*_get_se3_V_input(log_rotation), eps=eps)
log_translation = torch.linalg.solve(V, T[:, :, None])[:, :, 0]
log_translation = solve(V, T[:, :, None])[:, :, 0]
return torch.cat((log_translation, log_rotation), dim=1)

View File

@@ -11,6 +11,7 @@ import torch
from ..transforms import acos_linear_extrapolation
HAT_INV_SKEW_SYMMETRIC_TOL = 1e-5