mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-21 14:50:36 +08:00
fix recent lint
Summary: lint clean again Reviewed By: patricklabatut Differential Revision: D20868775 fbshipit-source-id: ade4301c1012c5c6943186432465215701d635a9
This commit is contained in:
committed by
Facebook GitHub Bot
parent
90dc7a0856
commit
b87058c62a
@@ -1,12 +1,12 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
||||
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import torch
|
||||
from typing import List, Tuple, Union
|
||||
|
||||
from pytorch3d.structures.pointclouds import Pointclouds
|
||||
from pytorch3d.structures import utils as strutil
|
||||
import torch
|
||||
from pytorch3d.ops import utils as oputil
|
||||
from pytorch3d.structures import utils as strutil
|
||||
from pytorch3d.structures.pointclouds import Pointclouds
|
||||
|
||||
|
||||
def corresponding_points_alignment(
|
||||
@@ -77,9 +77,7 @@ def corresponding_points_alignment(
|
||||
weights = strutil.list_to_padded(weights)[..., 0]
|
||||
|
||||
if Xt.shape[:2] != weights.shape:
|
||||
raise ValueError(
|
||||
"weights should have the same first two dimensions as X."
|
||||
)
|
||||
raise ValueError("weights should have the same first two dimensions as X.")
|
||||
|
||||
b, n, dim = Xt.shape
|
||||
|
||||
@@ -120,9 +118,7 @@ def corresponding_points_alignment(
|
||||
U, S, V = torch.svd(XYcov)
|
||||
|
||||
# identity matrix used for fixing reflections
|
||||
E = torch.eye(dim, dtype=XYcov.dtype, device=XYcov.device)[None].repeat(
|
||||
b, 1, 1
|
||||
)
|
||||
E = torch.eye(dim, dtype=XYcov.dtype, device=XYcov.device)[None].repeat(b, 1, 1)
|
||||
|
||||
if not allow_reflection:
|
||||
# reflection test:
|
||||
|
||||
@@ -27,7 +27,7 @@ def wmean(
|
||||
* if `weights` is None => `mean(x, dim)`,
|
||||
* otherwise => `sum(x*w, dim) / max{sum(w, dim), eps}`.
|
||||
"""
|
||||
args = dict(dim=dim, keepdim=keepdim)
|
||||
args = {"dim": dim, "keepdim": keepdim}
|
||||
|
||||
if weight is None:
|
||||
return x.mean(**args)
|
||||
@@ -38,7 +38,6 @@ def wmean(
|
||||
):
|
||||
raise ValueError("wmean: weights are not compatible with the tensor")
|
||||
|
||||
return (
|
||||
(x * weight[..., None]).sum(**args)
|
||||
/ weight[..., None].sum(**args).clamp(eps)
|
||||
return (x * weight[..., None]).sum(**args) / weight[..., None].sum(**args).clamp(
|
||||
eps
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user