Initialization of Transform3D with a custom matrix.

Summary:
Allows to initialize a Transform3D object with a batch of user-defined transformation matrices:
```
t = Transform3D(matrix=torch.randn(2, 4, 4))
```

Reviewed By: nikhilaravi

Differential Revision: D20693475

fbshipit-source-id: dccc49b2ca4c19a034844c63463953ba8f52c1bc
This commit is contained in:
David Novotny 2020-04-05 14:42:22 -07:00 committed by Facebook GitHub Bot
parent e37085d999
commit 90dc7a0856
2 changed files with 44 additions and 2 deletions

View File

@ -134,8 +134,37 @@ class Transform3d:
"""
def __init__(self, dtype=torch.float32, device="cpu"):
self._matrix = torch.eye(4, dtype=dtype, device=device).view(1, 4, 4)
def __init__(
self,
dtype: torch.dtype = torch.float32,
device="cpu",
matrix: Optional[torch.Tensor] = None,
):
"""
Args:
dtype: The data type of the transformation matrix.
to be used if `matrix = None`.
device: The device for storing the implemented transformation.
If `matrix != None`, uses the device of input `matrix`.
matrix: A tensor of shape (4, 4) or of shape (minibatch, 4, 4)
representing the 4x4 3D transformation matrix.
If `None`, initializes with identity using
the specified `device` and `dtype`.
"""
if matrix is None:
self._matrix = torch.eye(4, dtype=dtype, device=device).view(1, 4, 4)
else:
if matrix.ndim not in (2, 3):
raise ValueError('"matrix" has to be a 2- or a 3-dimensional tensor.')
if matrix.shape[-2] != 4 or matrix.shape[-1] != 4:
raise ValueError(
'"matrix" has to be a tensor of shape (minibatch, 4, 4)'
)
# set the device from matrix
device = matrix.device
self._matrix = matrix.view(-1, 4, 4)
self._transforms = [] # store transforms to compose
self._lu = None
self.device = device

View File

@ -57,6 +57,19 @@ class TestTransform(unittest.TestCase):
matrix2 = t_pair[1].get_matrix()
self.assertTrue(torch.allclose(matrix1, matrix2))
def test_init_with_custom_matrix(self):
for matrix in (torch.randn(10, 4, 4), torch.randn(4, 4)):
t = Transform3d(matrix=matrix)
self.assertTrue(t.device == matrix.device)
self.assertTrue(t._matrix.dtype == matrix.dtype)
self.assertTrue(torch.allclose(t._matrix, matrix.view(t._matrix.shape)))
def test_init_with_custom_matrix_errors(self):
bad_shapes = [[10, 5, 4], [3, 4], [10, 4, 4, 1], [10, 4, 4, 2], [4, 4, 4, 3]]
for bad_shape in bad_shapes:
matrix = torch.randn(*bad_shape).float()
self.assertRaises(ValueError, Transform3d, matrix=matrix)
def test_translate(self):
t = Transform3d().translate(1, 2, 3)
points = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.5, 0.5, 0.0]]).view(