pulsar integration.

Summary:
This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code.

For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`.

Tasks addressed in the following diffs:
* Add the PyTorch3D interface,
* Add notebook examples and documentation (or adapt the existing ones to feature both interfaces).

Reviewed By: nikhilaravi

Differential Revision: D23947736

fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
This commit is contained in:
Christoph Lassner
2020-11-03 13:05:02 -08:00
committed by Facebook GitHub Bot
parent d565032399
commit b19fe1de2f
137 changed files with 10055 additions and 37 deletions

View File

@@ -110,3 +110,7 @@ def bm_barycentric_clip() -> None:
benchmark(baryclip_cuda, "BARY_CLIP_CUDA", kwargs_list, warmup_iters=1)
benchmark(baryclip_pytorch, "BARY_CLIP_PYTORCH", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_barycentric_clip()

View File

@@ -42,3 +42,7 @@ def bm_blending() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_blending()

View File

@@ -22,3 +22,7 @@ def bm_cameras_alignment() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_cameras_alignment()

View File

@@ -8,6 +8,8 @@ from test_chamfer import TestChamfer
def bm_chamfer() -> None:
# Currently disabled.
return
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda:0")
@@ -53,3 +55,7 @@ def bm_chamfer() -> None:
}
)
benchmark(TestChamfer.chamfer_with_init, "CHAMFER", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_chamfer()

View File

@@ -11,3 +11,7 @@ def bm_cubify() -> None:
{"batch_size": 16, "V": 32},
]
benchmark(TestCubify.cubify_with_init, "CUBIFY", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_cubify()

View File

@@ -37,3 +37,7 @@ def bm_face_areas_normals() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_face_areas_normals()

View File

@@ -40,3 +40,7 @@ def bm_graph_conv() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_graph_conv()

View File

@@ -74,3 +74,7 @@ def bm_interpolate_face_attribues() -> None:
kwargs_list.append({"N": N, "S": S, "K": K, "F": F, "D": D, "impl": impl})
benchmark(_bm_forward, "FORWARD", kwargs_list, warmup_iters=3)
benchmark(_bm_forward_backward, "FORWARD+BACKWARD", kwargs_list, warmup_iters=3)
if __name__ == "__main__":
bm_interpolate_face_attribues()

View File

@@ -24,3 +24,7 @@ def bm_knn() -> None:
benchmark(TestKNN.knn_square, "KNN_SQUARE", kwargs_list, warmup_iters=1)
benchmark(TestKNN.knn_ragged, "KNN_RAGGED", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_knn()

View File

@@ -45,3 +45,7 @@ def bm_lighting() -> None:
kwargs_list.append({"N": N, "S": S, "K": K})
benchmark(_bm_diffuse_cuda_with_init, "DIFFUSE", kwargs_list, warmup_iters=3)
benchmark(_bm_specular_cuda_with_init, "SPECULAR", kwargs_list, warmup_iters=3)
if __name__ == "__main__":
bm_lighting()

View File

@@ -2,8 +2,10 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import glob
import importlib
from os.path import basename, dirname, isfile, join, sys
import os
import subprocess
import sys
from os.path import dirname, isfile, join
if __name__ == "__main__":
@@ -11,20 +13,22 @@ if __name__ == "__main__":
if len(sys.argv) > 1:
# Parse from flags.
# pyre-ignore[16]
module_names = [n for n in sys.argv if n.startswith("bm_")]
file_names = [
join(dirname(__file__), n) for n in sys.argv if n.startswith("bm_")
]
else:
# Get all the benchmark files (starting with "bm_").
bm_files = glob.glob(join(dirname(__file__), "bm_*.py"))
module_names = [
basename(f)[:-3]
for f in bm_files
if isfile(f) and not f.endswith("bm_main.py")
]
file_names = sorted(
f for f in bm_files if isfile(f) and not f.endswith("bm_main.py")
)
for module_name in module_names:
module = importlib.import_module(module_name)
for attr in dir(module):
# Run all the functions with names "bm_*" in the module.
if attr.startswith("bm_"):
print("Running benchmarks for " + module_name + "/" + attr + "...")
getattr(module, attr)()
# Forward all important path information to the subprocesses through the
# environment.
os.environ["PATH"] = sys.path[0] + ":" + os.environ.get("PATH", "")
os.environ["LD_LIBRARY_PATH"] = (
sys.path[0] + ":" + os.environ.get("LD_LIBRARY_PATH", "")
)
os.environ["PYTHONPATH"] = ":".join(sys.path)
for file_name in file_names:
subprocess.check_call([sys.executable, file_name])

View File

@@ -19,3 +19,7 @@ def bm_mesh_edge_loss() -> None:
benchmark(
TestMeshEdgeLoss.mesh_edge_loss, "MESH_EDGE_LOSS", kwargs_list, warmup_iters=1
)
if __name__ == "__main__":
bm_mesh_edge_loss()

View File

@@ -95,3 +95,7 @@ def bm_save_load() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_save_load()

View File

@@ -30,3 +30,7 @@ def bm_mesh_laplacian_smoothing() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_mesh_laplacian_smoothing()

View File

@@ -27,3 +27,7 @@ def bm_mesh_normal_consistency() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_mesh_normal_consistency()

View File

@@ -43,3 +43,7 @@ def bm_mesh_rasterizer_transform() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_mesh_rasterizer_transform()

View File

@@ -33,3 +33,7 @@ def bm_compute_packed_padded_meshes() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_compute_packed_padded_meshes()

View File

@@ -38,3 +38,7 @@ def bm_packed_to_padded() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_packed_to_padded()

View File

@@ -23,3 +23,7 @@ def bm_perspective_n_points() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_perspective_n_points()

View File

@@ -34,3 +34,7 @@ def bm_point_mesh_distance() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_point_mesh_distance()

View File

@@ -28,3 +28,7 @@ def bm_compute_packed_padded_pointclouds() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_compute_packed_padded_pointclouds()

View File

@@ -69,3 +69,8 @@ def bm_corresponding_points_alignment() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_corresponding_points_alignment()
bm_iterative_closest_point()

121
tests/bm_pulsar.py Executable file
View File

@@ -0,0 +1,121 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Test render speed."""
import logging
import sys
from os import path
import torch
from fvcore.common.benchmark import benchmark
from pytorch3d.renderer.points.pulsar import Renderer
from torch.autograd import Variable
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
LOGGER = logging.getLogger(__name__)
"""Measure the execution speed of the rendering.
This measures a very pessimistic upper bound on speed, because synchronization
points have to be introduced in Python. On a pure PyTorch execution pipeline,
results should be significantly faster. You can get pure CUDA timings through
C++ by activating `PULSAR_TIMINGS_BATCHED_ENABLED` in the file
`pytorch3d/csrc/pulsar/logging.h` or defining it for your compiler.
"""
def _bm_pulsar():
n_points = 1_000_000
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
device = torch.device("cuda")
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
vert_pos_var = Variable(vert_pos, requires_grad=False)
vert_col_var = Variable(vert_col, requires_grad=False)
vert_rad_var = Variable(vert_rad, requires_grad=False)
cam_params_var = Variable(cam_params, requires_grad=False)
def bm_closure():
renderer.forward(
vert_pos_var,
vert_col_var,
vert_rad_var,
cam_params_var,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
torch.cuda.synchronize()
return bm_closure
def _bm_pulsar_backward():
n_points = 1_000_000
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
device = torch.device("cuda")
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
vert_pos_var = Variable(vert_pos, requires_grad=True)
vert_col_var = Variable(vert_col, requires_grad=True)
vert_rad_var = Variable(vert_rad, requires_grad=True)
cam_params_var = Variable(cam_params, requires_grad=True)
res = renderer.forward(
vert_pos_var,
vert_col_var,
vert_rad_var,
cam_params_var,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
loss = res.sum()
def bm_closure():
loss.backward(retain_graph=True)
torch.cuda.synchronize()
return bm_closure
def bm_pulsar() -> None:
if not torch.cuda.is_available():
return
benchmark(_bm_pulsar, "PULSAR_FORWARD", [{}], warmup_iters=3)
benchmark(_bm_pulsar_backward, "PULSAR_BACKWARD", [{}], warmup_iters=3)
if __name__ == "__main__":
bm_pulsar()

View File

@@ -85,3 +85,7 @@ def bm_rasterize_meshes() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_rasterize_meshes()

View File

@@ -80,3 +80,7 @@ def bm_python_vs_cpu_vs_cuda() -> None:
benchmark(
_bm_rasterize_points_with_init, "RASTERIZE_CUDA", kwargs_list, warmup_iters=1
)
if __name__ == "__main__":
bm_python_vs_cpu_vs_cuda()

View File

@@ -36,3 +36,7 @@ def bm_sample_points() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_sample_points()

View File

@@ -13,3 +13,7 @@ def bm_so3() -> None:
]
benchmark(TestSO3.so3_expmap, "SO3_EXP", kwargs_list, warmup_iters=1)
benchmark(TestSO3.so3_logmap, "SO3_LOG", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_so3()

View File

@@ -21,3 +21,7 @@ def bm_subdivide() -> None:
kwargs_list,
warmup_iters=1,
)
if __name__ == "__main__":
bm_subdivide()

View File

@@ -27,3 +27,7 @@ def bm_vert_align() -> None:
benchmark(
TestVertAlign.vert_align_with_init, "VERT_ALIGN", kwargs_list, warmup_iters=1
)
if __name__ == "__main__":
bm_vert_align()

1
tests/pulsar/__init__.py Normal file
View File

@@ -0,0 +1 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

View File

@@ -0,0 +1,88 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Create multiview data."""
import sys
from os import path
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
def create_multiview():
"""Test multiview optimization."""
from pytorch3d.renderer.points.pulsar import Renderer
import torch
from torch import nn
import imageio
from torch.autograd import Variable
# import cv2
# import skvideo.io
import numpy as np
# Constructor.
n_points = 10
width = 1000
height = 1000
class Model(nn.Module):
"""A dummy model to test the integration into a stacked model."""
def __init__(self):
super(Model, self).__init__()
self.gamma = 0.1
self.renderer = Renderer(width, height, n_points)
def forward(self, vp, vc, vr, cam_params):
# self.gamma *= 0.995
# print("gamma: ", self.gamma)
return self.renderer.forward(vp, vc, vr, cam_params, self.gamma, 45.0)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
# print(vert_pos[0])
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
# Distortion.
# vert_pos[:, 1] += 0.5
vert_col *= 0.5
# vert_rad *= 0.7
for device in [torch.device("cuda")]:
model = Model().to(device)
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
for angle_idx, angle in enumerate([-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]):
vert_pos_v = Variable(vert_pos, requires_grad=False)
vert_col_v = Variable(vert_col, requires_grad=False)
vert_rad_v = Variable(vert_rad, requires_grad=False)
cam_params = torch.tensor(
[
np.sin(angle) * 35.0,
0.0,
30.0 - np.cos(angle) * 35.0,
0.0,
-angle,
0.0,
5.0,
2.0,
],
dtype=torch.float32,
).to(device)
cam_params_v = Variable(cam_params, requires_grad=False)
result = model.forward(vert_pos_v, vert_col_v, vert_rad_v, cam_params_v)
result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
imageio.imsave(
"reference/examples_TestRenderer_test_multiview_%d.png" % (angle_idx),
result_im,
)
if __name__ == "__main__":
create_multiview()

Binary file not shown.

After

Width:  |  Height:  |  Size: 110 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,149 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Test number of channels."""
import logging
import sys
import unittest
from os import path
import torch
# fmt: off
# Make the mixin available.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
from common_testing import TestCaseMixin # isort:skip # noqa: E402
# fmt: on
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
class TestChannels(TestCaseMixin, unittest.TestCase):
"""Test different numbers of channels."""
def test_basic(self):
"""Basic forward test."""
from pytorch3d.renderer.points.pulsar import Renderer
import torch
n_points = 10
width = 1_000
height = 1_000
renderer_1 = Renderer(width, height, n_points, n_channels=1)
renderer_3 = Renderer(width, height, n_points, n_channels=3)
renderer_8 = Renderer(width, height, n_points, n_channels=8)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_col = torch.rand(n_points, 8, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer_1 = renderer_1.to(device)
renderer_3 = renderer_3.to(device)
renderer_8 = renderer_8.to(device)
result_1 = (
renderer_1.forward(
vert_pos,
vert_col[:, :1],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_1 = (
renderer_1.forward(
vert_pos,
vert_col[:, :1],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_3 = (
renderer_3.forward(
vert_pos,
vert_col[:, :3],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_3 = (
renderer_3.forward(
vert_pos,
vert_col[:, :3],
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_8 = (
renderer_8.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_8 = (
renderer_8.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
self.assertClose(result_1, result_3[:, :, :1])
self.assertClose(result_3, result_8[:, :, :3])
self.assertClose(hits_1, hits_3)
self.assertClose(hits_8, hits_3)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
unittest.main()

View File

@@ -0,0 +1,97 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Test the sorting of the closest spheres."""
import logging
import os
import sys
import unittest
from os import path
import imageio
import numpy as np
import torch
# fmt: off
# Make the mixin available.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
from common_testing import TestCaseMixin # isort:skip # noqa: E402
# fmt: on
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
IN_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
OUT_REF_FP = path.join(path.dirname(__file__), "reference", "nr0000-out.pth")
class TestDepth(TestCaseMixin, unittest.TestCase):
"""Test different numbers of channels."""
def test_basic(self):
from pytorch3d.renderer.points.pulsar import Renderer
for device in devices:
gamma = 1e-5
max_depth = 15.0
min_depth = 5.0
renderer = Renderer(
256,
256,
10000,
orthogonal_projection=True,
right_handed_system=False,
n_channels=1,
).to(device)
data = torch.load(IN_REF_FP, map_location="cpu")
# data["pos"] = torch.rand_like(data["pos"])
# data["pos"][:, 0] = data["pos"][:, 0] * 2. - 1.
# data["pos"][:, 1] = data["pos"][:, 1] * 2. - 1.
# data["pos"][:, 2] = data["pos"][:, 2] + 9.5
result, result_info = renderer.forward(
data["pos"].to(device),
data["col"].to(device),
data["rad"].to(device),
data["cam_params"].to(device),
gamma,
min_depth=min_depth,
max_depth=max_depth,
return_forward_info=True,
bg_col=torch.zeros(1, device=device, dtype=torch.float32),
percent_allowed_difference=0.01,
)
sphere_ids = Renderer.sphere_ids_from_result_info_nograd(result_info)
depth_map = Renderer.depth_map_from_result_info_nograd(result_info)
depth_vis = (depth_map - depth_map[depth_map > 0].min()) * 200 / (
depth_map.max() - depth_map[depth_map > 0.0].min()
) + 50
if not os.environ.get("FB_TEST", False):
imageio.imwrite(
path.join(
path.dirname(__file__),
"test_out",
"test_depth_test_basic_depth.png",
),
depth_vis.cpu().numpy().astype(np.uint8),
)
# torch.save(
# data, path.join(path.dirname(__file__), "reference", "nr0000-in.pth")
# )
# torch.save(
# {"sphere_ids": sphere_ids, "depth_map": depth_map},
# path.join(path.dirname(__file__), "reference", "nr0000-out.pth"),
# )
# sys.exit(0)
reference = torch.load(OUT_REF_FP, map_location="cpu")
self.assertTrue(
torch.sum(
reference["sphere_ids"][..., 0].to(device) == sphere_ids[..., 0]
)
> 65530
)
self.assertClose(reference["depth_map"].to(device), depth_map)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
unittest.main()

View File

@@ -0,0 +1,353 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Basic rendering test."""
import logging
import os
import sys
import unittest
from os import path
import imageio
import numpy as np
import torch
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
LOGGER = logging.getLogger(__name__)
devices = [torch.device("cuda"), torch.device("cpu")]
class TestForward(unittest.TestCase):
"""Rendering tests."""
def test_bg_weight(self):
"""Test background reweighting."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 3 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, background_normalized_depth=0.999)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_bg_weight.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_bg_weight_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(),
[1.0, 1.0, 1.0],
rtol=1e-2,
atol=1e-2,
)
)
def test_basic_3chan(self):
"""Test rendering one image with one sphere, 3 channels."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 3 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3, 0.5, 0.7]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_3chan.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_3chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(),
[0.3, 0.5, 0.7],
rtol=1e-2,
atol=1e-2,
)
)
def test_basic_1chan(self):
"""Test rendering one image with one sphere, 1 channel."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 1 channel...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=1)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.3]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_1chan.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_1chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, :].cpu().numpy(), [0.3], rtol=1e-2, atol=1e-2
)
)
def test_basic_8chan(self):
"""Test rendering one image with one sphere, 8 channels."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for 8 channels...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=8)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor(
[[1.0, 1.0, 1.0, 1.0, 1.0, 0.3, 0.5, 0.7]], dtype=torch.float32
)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
hits = renderer.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_8chan.png",
),
(result[:, :, 5:8] * 255.0).cpu().to(torch.uint8).numpy(),
)
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_basic_8chan_hits.png",
),
(hits * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertEqual(hits[500, 500, 0].item(), 1.0)
self.assertTrue(
np.allclose(
result[500, 500, 5:8].cpu().numpy(),
[0.3, 0.5, 0.7],
rtol=1e-2,
atol=1e-2,
)
)
self.assertTrue(
np.allclose(
result[500, 500, :5].cpu().numpy(), 1.0, rtol=1e-2, atol=1e-2
)
)
def test_principal_point(self):
"""Test shifting the principal point."""
from pytorch3d.renderer.points.pulsar import Renderer
LOGGER.info("Setting up rendering test for shifted principal point...")
n_points = 1
width = 1_000
height = 1_000
renderer = Renderer(width, height, n_points, n_channels=1)
vert_pos = torch.tensor([[0.0, 0.0, 25.0]], dtype=torch.float32)
vert_col = torch.tensor([[0.0]], dtype=torch.float32)
vert_rad = torch.tensor([1.0], dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0, 0.0, 0.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
cam_params[-2] = -250.0
cam_params[-1] = -250.0
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_principal_point.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertTrue(
np.allclose(
result[750, 750, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
)
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
cam_params[-2] = 250.0
cam_params[-1] = 250.0
renderer = renderer.to(device)
LOGGER.info("Rendering...")
# Measurements.
result = renderer.forward(
vert_pos, vert_col, vert_rad, cam_params, 1.0e-1, 45.0
)
if not os.environ.get("FB_TEST", False):
imageio.imsave(
path.join(
path.dirname(__file__),
"test_out",
"test_forward_TestForward_test_principal_point.png",
),
(result * 255.0).cpu().to(torch.uint8).numpy(),
)
self.assertTrue(
np.allclose(
result[250, 250, :].cpu().numpy(), [0.0], rtol=1e-2, atol=1e-2
)
)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
unittest.main()

120
tests/pulsar/test_hands.py Normal file
View File

@@ -0,0 +1,120 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Test right hand/left hand system compatibility."""
import logging
import sys
import unittest
from os import path
import torch
# fmt: off
# Make the mixin available.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
from common_testing import TestCaseMixin # isort:skip # noqa: E402
# fmt: on
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), "..", ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
class TestHands(TestCaseMixin, unittest.TestCase):
"""Test right hand/left hand system compatibility."""
def test_basic(self):
"""Basic forward test."""
from pytorch3d.renderer.points.pulsar import Renderer
n_points = 10
width = 1000
height = 1000
renderer_left = Renderer(width, height, n_points, right_handed_system=False)
renderer_right = Renderer(width, height, n_points, right_handed_system=True)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_pos_neg = vert_pos.clone()
vert_pos_neg[:, 2] *= -1.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 2.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_pos_neg = vert_pos_neg.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer_left = renderer_left.to(device)
renderer_right = renderer_right.to(device)
result_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
self.assertClose(result_left, result_right)
self.assertClose(hits_left, hits_right)
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
unittest.main()

126
tests/pulsar/test_ortho.py Normal file
View File

@@ -0,0 +1,126 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Tests for the orthogonal projection."""
import logging
import sys
import unittest
from os import path
import numpy as np
import torch
# Making sure you can run this, even if pulsar hasn't been installed yet.
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
class TestOrtho(unittest.TestCase):
"""Test the orthogonal projection."""
def test_basic(self):
"""Basic forward test of the orthogonal projection."""
from pytorch3d.renderer.points.pulsar import Renderer
n_points = 10
width = 1000
height = 1000
renderer_left = Renderer(
width,
height,
n_points,
right_handed_system=False,
orthogonal_projection=True,
)
renderer_right = Renderer(
width,
height,
n_points,
right_handed_system=True,
orthogonal_projection=True,
)
# Generate sample data.
torch.manual_seed(1)
vert_pos = torch.rand(n_points, 3, dtype=torch.float32) * 10.0
vert_pos[:, 2] += 25.0
vert_pos[:, :2] -= 5.0
vert_pos_neg = vert_pos.clone()
vert_pos_neg[:, 2] *= -1.0
vert_col = torch.rand(n_points, 3, dtype=torch.float32)
vert_rad = torch.rand(n_points, dtype=torch.float32)
cam_params = torch.tensor(
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 20.0], dtype=torch.float32
)
for device in devices:
vert_pos = vert_pos.to(device)
vert_pos_neg = vert_pos_neg.to(device)
vert_col = vert_col.to(device)
vert_rad = vert_rad.to(device)
cam_params = cam_params.to(device)
renderer_left = renderer_left.to(device)
renderer_right = renderer_right.to(device)
result_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_left = (
renderer_left.forward(
vert_pos,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
result_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
)
.cpu()
.detach()
.numpy()
)
hits_right = (
renderer_right.forward(
vert_pos_neg,
vert_col,
vert_rad,
cam_params,
1.0e-1,
45.0,
percent_allowed_difference=0.01,
mode=1,
)
.cpu()
.detach()
.numpy()
)
self.assertTrue(np.allclose(result_left, result_right))
self.assertTrue(np.allclose(hits_left, hits_right))
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logging.getLogger("pulsar.renderer").setLevel(logging.WARN)
unittest.main()

View File

View File

@@ -0,0 +1,139 @@
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
"""Test right hand/left hand system compatibility."""
import sys
import unittest
from os import path
import numpy as np
import torch
from torch import nn
sys.path.insert(0, path.join(path.dirname(__file__), ".."))
devices = [torch.device("cuda"), torch.device("cpu")]
n_points = 10
width = 1_000
height = 1_000
class SceneModel(nn.Module):
"""A simple model to demonstrate use in Modules."""
def __init__(self):
super(SceneModel, self).__init__()
from pytorch3d.renderer.points.pulsar import Renderer
self.gamma = 1.0
# Points.
torch.manual_seed(1)
vert_pos = torch.rand((1, n_points, 3), dtype=torch.float32) * 10.0
vert_pos[:, :, 2] += 25.0
vert_pos[:, :, :2] -= 5.0
self.register_parameter("vert_pos", nn.Parameter(vert_pos, requires_grad=False))
self.register_parameter(
"vert_col",
nn.Parameter(
torch.zeros(1, n_points, 3, dtype=torch.float32), requires_grad=True
),
)
self.register_parameter(
"vert_rad",
nn.Parameter(
torch.ones(1, n_points, dtype=torch.float32) * 0.001,
requires_grad=False,
),
)
self.register_parameter(
"vert_opy",
nn.Parameter(
torch.ones(1, n_points, dtype=torch.float32), requires_grad=False
),
)
self.register_buffer(
"cam_params",
torch.tensor(
[
[
np.sin(angle) * 35.0,
0.0,
30.0 - np.cos(angle) * 35.0,
0.0,
-angle,
0.0,
5.0,
2.0,
]
for angle in [-1.5, -0.8, -0.4, -0.1, 0.1, 0.4, 0.8, 1.5]
],
dtype=torch.float32,
),
)
self.renderer = Renderer(width, height, n_points)
def forward(self, cam=None):
if cam is None:
cam = self.cam_params
n_views = 8
else:
n_views = 1
return self.renderer.forward(
self.vert_pos.expand(n_views, -1, -1),
self.vert_col.expand(n_views, -1, -1),
self.vert_rad.expand(n_views, -1),
cam,
self.gamma,
45.0,
return_forward_info=True,
)
class TestSmallSpheres(unittest.TestCase):
"""Test small sphere rendering and gradients."""
def test_basic(self):
for device in devices:
# Set up model.
model = SceneModel().to(device)
angle = 0.0
for _ in range(50):
cam_control = torch.tensor(
[
[
np.sin(angle) * 35.0,
0.0,
30.0 - np.cos(angle) * 35.0,
0.0,
-angle,
0.0,
5.0,
2.0,
]
],
dtype=torch.float32,
).to(device)
result, forw_info = model(cam=cam_control)
sphere_ids = model.renderer.sphere_ids_from_result_info_nograd(
forw_info
)
# Assert all spheres are rendered.
for idx in range(n_points):
self.assertTrue(
(sphere_ids == idx).sum() > 0, "Sphere ID %d missing!" % (idx)
)
# Visualize.
# result_im = (result.cpu().detach().numpy() * 255).astype(np.uint8)
# cv2.imshow("res", result_im[0, :, :, ::-1])
# cv2.waitKey(0)
# Back-propagate some dummy gradients.
loss = ((result - torch.ones_like(result)).abs()).sum()
loss.backward()
# Now check whether the gradient arrives at every sphere.
self.assertTrue(torch.all(model.vert_col.grad[:, :, 0].abs() > 0.0))
angle += 0.15
if __name__ == "__main__":
unittest.main()

View File

@@ -27,28 +27,6 @@ class TestBuild(unittest.TestCase):
for k, v in counter.items():
self.assertEqual(v, 1, f"Too many files with stem {k}.")
@unittest.skipIf(in_conda_build, "In conda build")
def test_deprecated_usage(self):
# Check certain expressions do not occur in the csrc code
test_dir = Path(__file__).resolve().parent
source_dir = test_dir.parent / "pytorch3d" / "csrc"
files = sorted(source_dir.glob("**/*.*"))
self.assertGreater(len(files), 4)
patterns = [".type()", ".data()"]
for file in files:
with open(file) as f:
text = f.read()
for pattern in patterns:
found = pattern in text
msg = (
f"{pattern} found in {file.name}"
+ ", this has been deprecated."
)
self.assertFalse(found, msg)
@unittest.skipIf(in_conda_build, "In conda build")
def test_copyright(self):
test_dir = Path(__file__).resolve().parent
@@ -63,6 +41,13 @@ class TestBuild(unittest.TestCase):
for extension in extensions:
for i in root_dir.glob(f"**/*.{extension}"):
print(i)
if str(i).endswith(
"pytorch3d/transforms/external/kornia_angle_axis_to_rotation_matrix.py"
):
continue
if str(i).endswith("pytorch3d/csrc/pulsar/include/fastermath.h"):
continue
with open(i) as f:
firstline = f.readline()
if firstline.startswith(("# -*-", "#!")):