pytorch3d/tests/bm_barycentric_clipping.py
Christoph Lassner b19fe1de2f pulsar integration.
Summary:
This diff integrates the pulsar renderer source code into PyTorch3D as an alternative backend for the PyTorch3D point renderer. This diff is the first of a series of three diffs to complete that migration and focuses on the packaging and integration of the source code.

For more information about the pulsar backend, see the release notes and the paper (https://arxiv.org/abs/2004.07484). For information on how to use the backend, see the point cloud rendering notebook and the examples in the folder `docs/examples`.

Tasks addressed in the following diffs:
* Add the PyTorch3D interface,
* Add notebook examples and documentation (or adapt the existing ones to feature both interfaces).

Reviewed By: nikhilaravi

Differential Revision: D23947736

fbshipit-source-id: a5e77b53e6750334db22aefa89b4c079cda1b443
2020-11-03 13:06:35 -08:00

117 lines
3.3 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
from itertools import product
import torch
from fvcore.common.benchmark import benchmark
from pytorch3d.renderer.cameras import FoVPerspectiveCameras, look_at_view_transform
from pytorch3d.renderer.mesh.rasterizer import (
Fragments,
MeshRasterizer,
RasterizationSettings,
)
from pytorch3d.renderer.mesh.utils import (
_clip_barycentric_coordinates,
_interpolate_zbuf,
)
from pytorch3d.utils.ico_sphere import ico_sphere
def baryclip_cuda(
num_meshes: int = 8,
ico_level: int = 5,
image_size: int = 64,
faces_per_pixel: int = 50,
device="cuda",
):
# Init meshes
sphere_meshes = ico_sphere(ico_level, device).extend(num_meshes)
# Init transform
R, T = look_at_view_transform(1.0, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
# Init rasterizer
raster_settings = RasterizationSettings(
image_size=image_size,
blur_radius=1e-4,
faces_per_pixel=faces_per_pixel,
clip_barycentric_coords=True,
)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
torch.cuda.synchronize()
def raster_fn():
rasterizer(sphere_meshes)
torch.cuda.synchronize()
return raster_fn
def baryclip_pytorch(
num_meshes: int = 8,
ico_level: int = 5,
image_size: int = 64,
faces_per_pixel: int = 50,
device="cuda",
):
# Init meshes
sphere_meshes = ico_sphere(ico_level, device).extend(num_meshes)
# Init transform
R, T = look_at_view_transform(1.0, 0.0, 0.0)
cameras = FoVPerspectiveCameras(device=device, R=R, T=T)
# Init rasterizer
raster_settings = RasterizationSettings(
image_size=image_size,
blur_radius=1e-4,
faces_per_pixel=faces_per_pixel,
clip_barycentric_coords=False,
)
rasterizer = MeshRasterizer(cameras=cameras, raster_settings=raster_settings)
torch.cuda.synchronize()
def raster_fn():
fragments = rasterizer(sphere_meshes)
# Clip bary and reinterpolate
clipped_bary_coords = _clip_barycentric_coordinates(fragments.bary_coords)
clipped_zbuf = _interpolate_zbuf(
fragments.pix_to_face, clipped_bary_coords, sphere_meshes
)
fragments = Fragments(
bary_coords=clipped_bary_coords,
zbuf=clipped_zbuf,
dists=fragments.dists,
pix_to_face=fragments.pix_to_face,
)
torch.cuda.synchronize()
return raster_fn
def bm_barycentric_clip() -> None:
if torch.cuda.is_available():
kwargs_list = []
num_meshes = [1, 8]
ico_level = [0, 4]
image_size = [64, 128, 256]
faces_per_pixel = [10, 75, 100]
test_cases = product(num_meshes, ico_level, image_size, faces_per_pixel)
for case in test_cases:
n, ic, im, nf = case
kwargs_list.append(
{
"num_meshes": n,
"ico_level": ic,
"image_size": im,
"faces_per_pixel": nf,
}
)
benchmark(baryclip_cuda, "BARY_CLIP_CUDA", kwargs_list, warmup_iters=1)
benchmark(baryclip_pytorch, "BARY_CLIP_PYTORCH", kwargs_list, warmup_iters=1)
if __name__ == "__main__":
bm_barycentric_clip()