mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Allow indexing for classes inheriting Transform3d (#1801)
Summary: Currently, it is not possible to access a sub-transform using an indexer for all 3d transforms inheriting the `Transforms3d` class. For instance: ```python from pytorch3d import transforms N = 10 r = transforms.random_rotations(N) T = transforms.Transform3d().rotate(R=r) R = transforms.Rotate(r) x = T[0] # ok x = R[0] # TypeError: __init__() got an unexpected keyword argument 'matrix' ``` This is because all these classes (namely `Rotate`, `Translate`, `Scale`, `RotateAxisAngle`) inherit the `__getitem__()` method from `Transform3d` which has the [following code on line 201](https://github.com/facebookresearch/pytorch3d/blob/main/pytorch3d/transforms/transform3d.py#L201): ```python return self.__class__(matrix=self.get_matrix()[index]) ``` The four classes inheriting `Transform3d` are not initialized through a matrix argument, hence they error. I propose to modify the `__getitem__()` method of the `Transform3d` class to fix this behavior. The least invasive way to do it I can think of consists of creating an empty instance of the current class, then setting the `_matrix` attribute manually. Thus, instead of ```python return self.__class__(matrix=self.get_matrix()[index]) ``` I propose to do: ```python instance = self.__class__.__new__(self.__class__) instance._matrix = self.get_matrix()[index] return instance ``` As far as I can tell, this modification occurs no modification whatsoever for the user, except for the ability to index all 3d transforms. Pull Request resolved: https://github.com/facebookresearch/pytorch3d/pull/1801 Reviewed By: MichaelRamamonjisoa Differential Revision: D58410389 Pulled By: bottler fbshipit-source-id: f371e4c63d2ae4c927a7ad48c2de8862761078de
This commit is contained in:
parent
b66d17a324
commit
b0462d8079
@ -564,6 +564,22 @@ class Translate(Transform3d):
|
||||
i_matrix = self._matrix * inv_mask
|
||||
return i_matrix
|
||||
|
||||
def __getitem__(
|
||||
self, index: Union[int, List[int], slice, torch.BoolTensor, torch.LongTensor]
|
||||
) -> "Transform3d":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the transform to retrieve.
|
||||
Can be an int, slice, list of ints, boolean, long tensor.
|
||||
Supports negative indices.
|
||||
|
||||
Returns:
|
||||
Transform3d object with selected transforms. The tensors are not cloned.
|
||||
"""
|
||||
if isinstance(index, int):
|
||||
index = [index]
|
||||
return self.__class__(self.get_matrix()[index, 3, :3])
|
||||
|
||||
|
||||
class Scale(Transform3d):
|
||||
def __init__(
|
||||
@ -613,6 +629,26 @@ class Scale(Transform3d):
|
||||
imat = torch.diag_embed(ixyz, dim1=1, dim2=2)
|
||||
return imat
|
||||
|
||||
def __getitem__(
|
||||
self, index: Union[int, List[int], slice, torch.BoolTensor, torch.LongTensor]
|
||||
) -> "Transform3d":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the transform to retrieve.
|
||||
Can be an int, slice, list of ints, boolean, long tensor.
|
||||
Supports negative indices.
|
||||
|
||||
Returns:
|
||||
Transform3d object with selected transforms. The tensors are not cloned.
|
||||
"""
|
||||
if isinstance(index, int):
|
||||
index = [index]
|
||||
mat = self.get_matrix()[index]
|
||||
x = mat[:, 0, 0]
|
||||
y = mat[:, 1, 1]
|
||||
z = mat[:, 2, 2]
|
||||
return self.__class__(x, y, z)
|
||||
|
||||
|
||||
class Rotate(Transform3d):
|
||||
def __init__(
|
||||
@ -655,6 +691,22 @@ class Rotate(Transform3d):
|
||||
"""
|
||||
return self._matrix.permute(0, 2, 1).contiguous()
|
||||
|
||||
def __getitem__(
|
||||
self, index: Union[int, List[int], slice, torch.BoolTensor, torch.LongTensor]
|
||||
) -> "Transform3d":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the transform to retrieve.
|
||||
Can be an int, slice, list of ints, boolean, long tensor.
|
||||
Supports negative indices.
|
||||
|
||||
Returns:
|
||||
Transform3d object with selected transforms. The tensors are not cloned.
|
||||
"""
|
||||
if isinstance(index, int):
|
||||
index = [index]
|
||||
return self.__class__(self.get_matrix()[index, :3, :3])
|
||||
|
||||
|
||||
class RotateAxisAngle(Rotate):
|
||||
def __init__(
|
||||
|
@ -685,6 +685,15 @@ class TestTranslate(unittest.TestCase):
|
||||
self.assertTrue(torch.allclose(im, im_comp))
|
||||
self.assertTrue(torch.allclose(im, im_2))
|
||||
|
||||
def test_get_item(self, batch_size=5):
|
||||
device = torch.device("cuda:0")
|
||||
xyz = torch.randn(size=[batch_size, 3], device=device, dtype=torch.float32)
|
||||
t3d = Translate(xyz)
|
||||
index = 1
|
||||
t3d_selected = t3d[index]
|
||||
self.assertEqual(len(t3d_selected), 1)
|
||||
self.assertIsInstance(t3d_selected, Translate)
|
||||
|
||||
|
||||
class TestScale(unittest.TestCase):
|
||||
def test_single_python_scalar(self):
|
||||
@ -871,6 +880,15 @@ class TestScale(unittest.TestCase):
|
||||
self.assertTrue(torch.allclose(im, im_comp))
|
||||
self.assertTrue(torch.allclose(im, im_2))
|
||||
|
||||
def test_get_item(self, batch_size=5):
|
||||
device = torch.device("cuda:0")
|
||||
s = torch.randn(size=[batch_size, 3], device=device, dtype=torch.float32)
|
||||
t3d = Scale(s)
|
||||
index = 1
|
||||
t3d_selected = t3d[index]
|
||||
self.assertEqual(len(t3d_selected), 1)
|
||||
self.assertIsInstance(t3d_selected, Scale)
|
||||
|
||||
|
||||
class TestTransformBroadcast(unittest.TestCase):
|
||||
def test_broadcast_transform_points(self):
|
||||
@ -986,6 +1004,15 @@ class TestRotate(unittest.TestCase):
|
||||
self.assertTrue(torch.allclose(im, im_comp, atol=1e-4))
|
||||
self.assertTrue(torch.allclose(im, im_2, atol=1e-4))
|
||||
|
||||
def test_get_item(self, batch_size=5):
|
||||
device = torch.device("cuda:0")
|
||||
r = random_rotations(batch_size, dtype=torch.float32, device=device)
|
||||
t3d = Rotate(r)
|
||||
index = 1
|
||||
t3d_selected = t3d[index]
|
||||
self.assertEqual(len(t3d_selected), 1)
|
||||
self.assertIsInstance(t3d_selected, Rotate)
|
||||
|
||||
|
||||
class TestRotateAxisAngle(unittest.TestCase):
|
||||
def test_rotate_x_python_scalar(self):
|
||||
|
Loading…
x
Reference in New Issue
Block a user