join_pointclouds_as_scene

Summary: New function

Reviewed By: davidsonic

Differential Revision: D42776590

fbshipit-source-id: 2a6e73480bcf2d1749f86bcb22d1942e3e8d3167
This commit is contained in:
Jeremy Reizenstein 2023-03-09 06:51:13 -08:00 committed by Facebook GitHub Bot
parent d388881f2c
commit a123815f40
3 changed files with 61 additions and 5 deletions

View File

@ -5,7 +5,11 @@
# LICENSE file in the root directory of this source tree.
from .meshes import join_meshes_as_batch, join_meshes_as_scene, Meshes
from .pointclouds import Pointclouds
from .pointclouds import (
join_pointclouds_as_batch,
join_pointclouds_as_scene,
Pointclouds,
)
from .utils import list_to_packed, list_to_padded, packed_to_list, padded_to_list
from .volumes import Volumes

View File

@ -124,12 +124,14 @@ class Pointclouds:
normals:
Can be either
- None
- List where each element is a tensor of shape (num_points, 3)
containing the normal vector for each point.
- Padded float tensor of shape (num_clouds, num_points, 3).
features:
Can be either
- None
- List where each element is a tensor of shape (num_points, C)
containing the features for the points in the cloud.
- Padded float tensor of shape (num_clouds, num_points, C).
@ -1260,6 +1262,42 @@ def join_pointclouds_as_batch(pointclouds: Sequence[Pointclouds]) -> Pointclouds
field_list = None
else:
field_list = [p for points in field_list for p in points]
if field == "features" and any(
p.shape[1] != field_list[0].shape[1] for p in field_list[1:]
):
raise ValueError("Pointclouds must have the same number of features")
kwargs[field] = field_list
return Pointclouds(**kwargs)
def join_pointclouds_as_scene(
pointclouds: Union[Pointclouds, List[Pointclouds]]
) -> Pointclouds:
"""
Joins a batch of point cloud in the form of a Pointclouds object or a list of Pointclouds
objects as a single point cloud. If the input is a list, the Pointclouds objects in the
list must all be on the same device, and they must either all or none have features and
all or none have normals.
Args:
Pointclouds: Pointclouds object that contains a batch of point clouds, or a list of
Pointclouds objects.
Returns:
new Pointclouds object containing a single point cloud
"""
if isinstance(pointclouds, list):
pointclouds = join_pointclouds_as_batch(pointclouds)
if len(pointclouds) == 1:
return pointclouds
points = pointclouds.points_packed()
features = pointclouds.features_packed()
normals = pointclouds.normals_packed()
pointcloud = Pointclouds(
points=points[None],
features=None if features is None else features[None],
normals=None if normals is None else normals[None],
)
return pointcloud

View File

@ -11,7 +11,11 @@ import unittest
import numpy as np
import torch
from pytorch3d.structures import utils as struct_utils
from pytorch3d.structures.pointclouds import join_pointclouds_as_batch, Pointclouds
from pytorch3d.structures.pointclouds import (
join_pointclouds_as_batch,
join_pointclouds_as_scene,
Pointclouds,
)
from .common_testing import TestCaseMixin
@ -1159,9 +1163,9 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
normals = [torch.rand(length, 3) for length in lengths]
# Test with normals and features present
pcl = Pointclouds(points=points, features=features, normals=normals)
pcl3 = join_pointclouds_as_batch([pcl] * 3)
check_triple(pcl, pcl3)
pcl1 = Pointclouds(points=points, features=features, normals=normals)
pcl3 = join_pointclouds_as_batch([pcl1] * 3)
check_triple(pcl1, pcl3)
# Test with normals and features present for tensor backed pointclouds
N, P, D = 5, 30, 4
@ -1173,15 +1177,25 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
pcl3 = join_pointclouds_as_batch([pcl] * 3)
check_triple(pcl, pcl3)
# Test with inconsistent #features
with self.assertRaisesRegex(ValueError, "same number of features"):
join_pointclouds_as_batch([pcl1, pcl])
# Test without normals
pcl_nonormals = Pointclouds(points=points, features=features)
pcl3 = join_pointclouds_as_batch([pcl_nonormals] * 3)
check_triple(pcl_nonormals, pcl3)
pcl_scene = join_pointclouds_as_scene([pcl_nonormals] * 3)
self.assertEqual(len(pcl_scene), 1)
self.assertClose(pcl_scene.features_packed(), pcl3.features_packed())
# Test without features
pcl_nofeats = Pointclouds(points=points, normals=normals)
pcl3 = join_pointclouds_as_batch([pcl_nofeats] * 3)
check_triple(pcl_nofeats, pcl3)
pcl_scene = join_pointclouds_as_scene([pcl_nofeats] * 3)
self.assertEqual(len(pcl_scene), 1)
self.assertClose(pcl_scene.normals_packed(), pcl3.normals_packed())
# Check error raised if all pointclouds in the batch
# are not consistent in including normals/features