mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-01 03:12:49 +08:00
join_pointclouds_as_scene
Summary: New function Reviewed By: davidsonic Differential Revision: D42776590 fbshipit-source-id: 2a6e73480bcf2d1749f86bcb22d1942e3e8d3167
This commit is contained in:
parent
d388881f2c
commit
a123815f40
@ -5,7 +5,11 @@
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from .meshes import join_meshes_as_batch, join_meshes_as_scene, Meshes
|
||||
from .pointclouds import Pointclouds
|
||||
from .pointclouds import (
|
||||
join_pointclouds_as_batch,
|
||||
join_pointclouds_as_scene,
|
||||
Pointclouds,
|
||||
)
|
||||
from .utils import list_to_packed, list_to_padded, packed_to_list, padded_to_list
|
||||
from .volumes import Volumes
|
||||
|
||||
|
@ -124,12 +124,14 @@ class Pointclouds:
|
||||
normals:
|
||||
Can be either
|
||||
|
||||
- None
|
||||
- List where each element is a tensor of shape (num_points, 3)
|
||||
containing the normal vector for each point.
|
||||
- Padded float tensor of shape (num_clouds, num_points, 3).
|
||||
features:
|
||||
Can be either
|
||||
|
||||
- None
|
||||
- List where each element is a tensor of shape (num_points, C)
|
||||
containing the features for the points in the cloud.
|
||||
- Padded float tensor of shape (num_clouds, num_points, C).
|
||||
@ -1260,6 +1262,42 @@ def join_pointclouds_as_batch(pointclouds: Sequence[Pointclouds]) -> Pointclouds
|
||||
field_list = None
|
||||
else:
|
||||
field_list = [p for points in field_list for p in points]
|
||||
if field == "features" and any(
|
||||
p.shape[1] != field_list[0].shape[1] for p in field_list[1:]
|
||||
):
|
||||
raise ValueError("Pointclouds must have the same number of features")
|
||||
kwargs[field] = field_list
|
||||
|
||||
return Pointclouds(**kwargs)
|
||||
|
||||
|
||||
def join_pointclouds_as_scene(
|
||||
pointclouds: Union[Pointclouds, List[Pointclouds]]
|
||||
) -> Pointclouds:
|
||||
"""
|
||||
Joins a batch of point cloud in the form of a Pointclouds object or a list of Pointclouds
|
||||
objects as a single point cloud. If the input is a list, the Pointclouds objects in the
|
||||
list must all be on the same device, and they must either all or none have features and
|
||||
all or none have normals.
|
||||
|
||||
Args:
|
||||
Pointclouds: Pointclouds object that contains a batch of point clouds, or a list of
|
||||
Pointclouds objects.
|
||||
|
||||
Returns:
|
||||
new Pointclouds object containing a single point cloud
|
||||
"""
|
||||
if isinstance(pointclouds, list):
|
||||
pointclouds = join_pointclouds_as_batch(pointclouds)
|
||||
|
||||
if len(pointclouds) == 1:
|
||||
return pointclouds
|
||||
points = pointclouds.points_packed()
|
||||
features = pointclouds.features_packed()
|
||||
normals = pointclouds.normals_packed()
|
||||
pointcloud = Pointclouds(
|
||||
points=points[None],
|
||||
features=None if features is None else features[None],
|
||||
normals=None if normals is None else normals[None],
|
||||
)
|
||||
return pointcloud
|
||||
|
@ -11,7 +11,11 @@ import unittest
|
||||
import numpy as np
|
||||
import torch
|
||||
from pytorch3d.structures import utils as struct_utils
|
||||
from pytorch3d.structures.pointclouds import join_pointclouds_as_batch, Pointclouds
|
||||
from pytorch3d.structures.pointclouds import (
|
||||
join_pointclouds_as_batch,
|
||||
join_pointclouds_as_scene,
|
||||
Pointclouds,
|
||||
)
|
||||
|
||||
from .common_testing import TestCaseMixin
|
||||
|
||||
@ -1159,9 +1163,9 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
|
||||
normals = [torch.rand(length, 3) for length in lengths]
|
||||
|
||||
# Test with normals and features present
|
||||
pcl = Pointclouds(points=points, features=features, normals=normals)
|
||||
pcl3 = join_pointclouds_as_batch([pcl] * 3)
|
||||
check_triple(pcl, pcl3)
|
||||
pcl1 = Pointclouds(points=points, features=features, normals=normals)
|
||||
pcl3 = join_pointclouds_as_batch([pcl1] * 3)
|
||||
check_triple(pcl1, pcl3)
|
||||
|
||||
# Test with normals and features present for tensor backed pointclouds
|
||||
N, P, D = 5, 30, 4
|
||||
@ -1173,15 +1177,25 @@ class TestPointclouds(TestCaseMixin, unittest.TestCase):
|
||||
pcl3 = join_pointclouds_as_batch([pcl] * 3)
|
||||
check_triple(pcl, pcl3)
|
||||
|
||||
# Test with inconsistent #features
|
||||
with self.assertRaisesRegex(ValueError, "same number of features"):
|
||||
join_pointclouds_as_batch([pcl1, pcl])
|
||||
|
||||
# Test without normals
|
||||
pcl_nonormals = Pointclouds(points=points, features=features)
|
||||
pcl3 = join_pointclouds_as_batch([pcl_nonormals] * 3)
|
||||
check_triple(pcl_nonormals, pcl3)
|
||||
pcl_scene = join_pointclouds_as_scene([pcl_nonormals] * 3)
|
||||
self.assertEqual(len(pcl_scene), 1)
|
||||
self.assertClose(pcl_scene.features_packed(), pcl3.features_packed())
|
||||
|
||||
# Test without features
|
||||
pcl_nofeats = Pointclouds(points=points, normals=normals)
|
||||
pcl3 = join_pointclouds_as_batch([pcl_nofeats] * 3)
|
||||
check_triple(pcl_nofeats, pcl3)
|
||||
pcl_scene = join_pointclouds_as_scene([pcl_nofeats] * 3)
|
||||
self.assertEqual(len(pcl_scene), 1)
|
||||
self.assertClose(pcl_scene.normals_packed(), pcl3.normals_packed())
|
||||
|
||||
# Check error raised if all pointclouds in the batch
|
||||
# are not consistent in including normals/features
|
||||
|
Loading…
x
Reference in New Issue
Block a user