Expose knn_check_version in python

Summary:
We have multiple KNN CUDA implementations. From python, users can currently request a particular implementation via the `version` flag, but they have no way of knowing which implementations can be used for a given problem.

This diff exposes a function `pytorch3d._C.knn_check_version(version, D, K)` that returns whether a particular version can be used.

Reviewed By: nikhilaravi

Differential Revision: D21162573

fbshipit-source-id: 6061960bdcecba454fd920b00036f4e9ff3fdbc0
This commit is contained in:
Justin Johnson
2020-04-22 14:28:19 -07:00
committed by Facebook GitHub Bot
parent e38cbfe5e3
commit 9f31a4fd46
4 changed files with 39 additions and 4 deletions

View File

@@ -155,6 +155,26 @@ class TestKNN(TestCaseMixin, unittest.TestCase):
else:
self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0))
def test_knn_check_version(self):
try:
from pytorch3d._C import knn_check_version
except ImportError:
# knn_check_version will only be defined if we compiled with CUDA support
return
for D in range(-10, 10):
for K in range(-10, 20):
v0 = True
v1 = 1 <= D <= 32
v2 = 1 <= D <= 8 and 1 <= K <= 32
v3 = 1 <= D <= 8 and 1 <= K <= 4
all_expected = [v0, v1, v2, v3]
for version in range(-10, 10):
actual = knn_check_version(version, D, K)
expected = False
if 0 <= version < len(all_expected):
expected = all_expected[version]
self.assertEqual(actual, expected)
@staticmethod
def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str):
device = torch.device(device)