Expose knn_check_version in python

Summary:
We have multiple KNN CUDA implementations. From python, users can currently request a particular implementation via the `version` flag, but they have no way of knowing which implementations can be used for a given problem.

This diff exposes a function `pytorch3d._C.knn_check_version(version, D, K)` that returns whether a particular version can be used.

Reviewed By: nikhilaravi

Differential Revision: D21162573

fbshipit-source-id: 6061960bdcecba454fd920b00036f4e9ff3fdbc0
This commit is contained in:
Justin Johnson 2020-04-22 14:28:19 -07:00 committed by Facebook GitHub Bot
parent e38cbfe5e3
commit 9f31a4fd46
4 changed files with 39 additions and 4 deletions

View File

@ -18,6 +18,9 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("face_areas_normals_backward", &FaceAreasNormalsBackward);
m.def("packed_to_padded", &PackedToPadded);
m.def("padded_to_packed", &PaddedToPacked);
#ifdef WITH_CUDA
m.def("knn_check_version", &KnnCheckVersion);
#endif
m.def("knn_points_idx", &KNearestNeighborIdx);
m.def("knn_points_backward", &KNearestNeighborBackward);
m.def("gather_scatter", &gather_scatter);

View File

@ -267,7 +267,7 @@ bool InBounds(const int64_t min, const int64_t x, const int64_t max) {
return min <= x && x <= max;
}
bool CheckVersion(int version, const int64_t D, const int64_t K) {
bool KnnCheckVersion(int version, const int64_t D, const int64_t K) {
if (version == 0) {
return true;
} else if (version == 1) {
@ -282,7 +282,7 @@ bool CheckVersion(int version, const int64_t D, const int64_t K) {
int ChooseVersion(const int64_t D, const int64_t K) {
for (int version = 3; version >= 1; version--) {
if (CheckVersion(version, D, K)) {
if (KnnCheckVersion(version, D, K)) {
return version;
}
}
@ -309,7 +309,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
if (version < 0) {
version = ChooseVersion(D, K);
} else if (!CheckVersion(version, D, K)) {
} else if (!KnnCheckVersion(version, D, K)) {
int new_version = ChooseVersion(D, K);
std::cout << "WARNING: Requested KNN version " << version
<< " is not compatible with D = " << D << "; K = " << K
@ -321,7 +321,7 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborIdxCuda(
// gave us. But we can check once more to be sure; however this time
// assert fail since failing at this point means we have a bug in our version
// selection or checking code.
AT_ASSERTM(CheckVersion(version, D, K), "Invalid version");
AT_ASSERTM(KnnCheckVersion(version, D, K), "Invalid version");
const size_t threads = 256;
const size_t blocks = 256;

View File

@ -128,3 +128,15 @@ std::tuple<at::Tensor, at::Tensor> KNearestNeighborBackward(
return KNearestNeighborBackwardCpu(
p1, p2, lengths1, lengths2, idxs, grad_dists);
}
// Utility to check whether a KNN version can be used.
//
// Args:
// version: Integer in the range 0 <= version <= 3 indicating one of our
// KNN implementations.
// D: Number of dimensions for the input and query point clouds
// K: Number of neighbors to be found
//
// Returns:
// Whether the indicated KNN version can be used.
bool KnnCheckVersion(int version, const int64_t D, const int64_t K);

View File

@ -155,6 +155,26 @@ class TestKNN(TestCaseMixin, unittest.TestCase):
else:
self.assertTrue(torch.all(y_nn[n, p1, k] == 0.0))
def test_knn_check_version(self):
try:
from pytorch3d._C import knn_check_version
except ImportError:
# knn_check_version will only be defined if we compiled with CUDA support
return
for D in range(-10, 10):
for K in range(-10, 20):
v0 = True
v1 = 1 <= D <= 32
v2 = 1 <= D <= 8 and 1 <= K <= 32
v3 = 1 <= D <= 8 and 1 <= K <= 4
all_expected = [v0, v1, v2, v3]
for version in range(-10, 10):
actual = knn_check_version(version, D, K)
expected = False
if 0 <= version < len(all_expected):
expected = all_expected[version]
self.assertEqual(actual, expected)
@staticmethod
def knn_square(N: int, P1: int, P2: int, D: int, K: int, device: str):
device = torch.device(device)