mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 22:30:35 +08:00
Support for moving the renderer to a new device
Summary: Support for moving all the tensors of the renderer to another device by calling `renderer.to(new_device)` Currently the `MeshRenderer`, `MeshRasterizer` and `SoftPhongShader` (and other shaders) are all of type `nn.Module` which already supports easily moving tensors of submodules (defined as class attributes) to a different device. However the class attributes of the rasterizer and shader (e.g. cameras, lights, materials), are of type `TensorProperties`, not nn.Module so we need to explicity create a `to` method to move these tensors to device. Note that the `TensorProperties` class already has a `to` method so we only need to call `cameras.to(device)` and don't need to worry about the internal tensors. The other option is of course making these other classes (cameras, lights etc) also of type nn.Module. Reviewed By: gkioxari Differential Revision: D23885107 fbshipit-source-id: d71565c442181f739de4d797076ed5d00fb67f8e
This commit is contained in:
committed by
Facebook GitHub Bot
parent
b1eee579fd
commit
956d3a010c
@@ -46,7 +46,7 @@ def hard_rgb_blend(colors, fragments, blend_params) -> torch.Tensor:
|
||||
is_background = fragments.pix_to_face[..., 0] < 0 # (N, H, W)
|
||||
|
||||
if torch.is_tensor(blend_params.background_color):
|
||||
background_color = blend_params.background_color
|
||||
background_color = blend_params.background_color.to(device)
|
||||
else:
|
||||
background_color = colors.new_tensor(blend_params.background_color) # (3)
|
||||
|
||||
@@ -163,6 +163,8 @@ def softmax_rgb_blend(
|
||||
background = blend_params.background_color
|
||||
if not torch.is_tensor(background):
|
||||
background = torch.tensor(background, dtype=torch.float32, device=device)
|
||||
else:
|
||||
background = background.to(device)
|
||||
|
||||
# Weight for background color
|
||||
eps = 1e-10
|
||||
|
||||
@@ -76,6 +76,10 @@ class MeshRasterizer(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.raster_settings = raster_settings
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device cameras as it is not a subclass of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
|
||||
def transform(self, meshes_world, **kwargs) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
|
||||
@@ -33,6 +33,11 @@ class MeshRenderer(nn.Module):
|
||||
self.rasterizer = rasterizer
|
||||
self.shader = shader
|
||||
|
||||
def to(self, device):
|
||||
# Rasterizer and shader have submodules which are not of type nn.Module
|
||||
self.rasterizer.to(device)
|
||||
self.shader.to(device)
|
||||
|
||||
def forward(self, meshes_world, **kwargs) -> torch.Tensor:
|
||||
"""
|
||||
Render a batch of images from a batch of meshes by rasterizing and then
|
||||
@@ -44,6 +49,7 @@ class MeshRenderer(nn.Module):
|
||||
face f, clipping is required before interpolating the texture uv
|
||||
coordinates and z buffer so that the colors and depths are limited to
|
||||
the range for the corresponding face.
|
||||
For this set rasterizer.raster_settings.clip_barycentric_coords=True
|
||||
"""
|
||||
fragments = self.rasterizer(meshes_world, **kwargs)
|
||||
images = self.shader(fragments, meshes_world, **kwargs)
|
||||
|
||||
@@ -50,6 +50,12 @@ class HardPhongShader(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device modules which are not subclasses of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
self.materials = self.materials.to(device)
|
||||
self.lights = self.lights.to(device)
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
cameras = kwargs.get("cameras", self.cameras)
|
||||
if cameras is None:
|
||||
@@ -98,6 +104,12 @@ class SoftPhongShader(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device modules which are not subclasses of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
self.materials = self.materials.to(device)
|
||||
self.lights = self.lights.to(device)
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
cameras = kwargs.get("cameras", self.cameras)
|
||||
if cameras is None:
|
||||
@@ -151,6 +163,12 @@ class HardGouraudShader(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device modules which are not subclasses of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
self.materials = self.materials.to(device)
|
||||
self.lights = self.lights.to(device)
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
cameras = kwargs.get("cameras", self.cameras)
|
||||
if cameras is None:
|
||||
@@ -203,6 +221,12 @@ class SoftGouraudShader(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device modules which are not subclasses of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
self.materials = self.materials.to(device)
|
||||
self.lights = self.lights.to(device)
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
cameras = kwargs.get("cameras", self.cameras)
|
||||
if cameras is None:
|
||||
@@ -272,6 +296,12 @@ class HardFlatShader(nn.Module):
|
||||
self.cameras = cameras
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def to(self, device):
|
||||
# Manually move to device modules which are not subclasses of nn.Module
|
||||
self.cameras = self.cameras.to(device)
|
||||
self.materials = self.materials.to(device)
|
||||
self.lights = self.lights.to(device)
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
cameras = kwargs.get("cameras", self.cameras)
|
||||
if cameras is None:
|
||||
|
||||
Reference in New Issue
Block a user