CPU implementation for point_mesh functions

Summary:
point_mesh functions were missing CPU implementations.
The indices returned are not always matching, possibly due to numerical instability.

Reviewed By: gkioxari

Differential Revision: D21594264

fbshipit-source-id: 3016930e2a9a0f3cd8b3ac4c94a92c9411c0989d
This commit is contained in:
Jeremy Reizenstein 2020-06-15 10:08:15 -07:00 committed by Facebook GitHub Bot
parent 7f1e63aed1
commit 74659aef26
6 changed files with 878 additions and 31 deletions

View File

@ -0,0 +1,398 @@
// Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#include <torch/extension.h>
#include <array>
#include <limits>
#include "utils/geometry_utils.h"
#include "utils/vec3.h"
// - We start with implementations of simple operations on points, edges and
// faces. The hull of H points is a point if H=1, an edge if H=2, a face if H=3.
template <typename T>
vec3<T> ExtractPoint(const at::TensorAccessor<T, 1>& t) {
return vec3(t[0], t[1], t[2]);
}
template <class Accessor>
struct ExtractHullHelper {
template <int H>
static std::array<vec3<std::remove_pointer_t<typename Accessor::PtrType>>, H>
get(const Accessor& t);
template <>
static std::array<vec3<std::remove_pointer_t<typename Accessor::PtrType>>, 1>
get<1>(const Accessor& t) {
return {ExtractPoint(t)};
}
template <>
static std::array<vec3<std::remove_pointer_t<typename Accessor::PtrType>>, 2>
get<2>(const Accessor& t) {
return {ExtractPoint(t[0]), ExtractPoint(t[1])};
}
template <>
static std::array<vec3<std::remove_pointer_t<typename Accessor::PtrType>>, 3>
get<3>(const Accessor& t) {
return {ExtractPoint(t[0]), ExtractPoint(t[1]), ExtractPoint(t[2])};
}
};
template <int H, typename Accessor>
std::array<vec3<std::remove_pointer_t<typename Accessor::PtrType>>, H>
ExtractHull(const Accessor& t) {
return ExtractHullHelper<Accessor>::template get<H>(t);
}
template <typename T>
void IncrementPoint(at::TensorAccessor<T, 1>&& t, const vec3<T>& point) {
t[0] += point.x;
t[1] += point.y;
t[2] += point.z;
}
// distance between the convex hull of A points and B points
// this could be done in c++17 with tuple_cat and invoke
template <typename T>
T HullDistance(
const std::array<vec3<T>, 1>& a,
const std::array<vec3<T>, 2>& b) {
using std::get;
return PointLine3DistanceForward(get<0>(a), get<0>(b), get<1>(b));
}
template <typename T>
T HullDistance(
const std::array<vec3<T>, 1>& a,
const std::array<vec3<T>, 3>& b) {
using std::get;
return PointTriangle3DistanceForward(
get<0>(a), get<0>(b), get<1>(b), get<2>(b));
}
template <typename T>
T HullDistance(
const std::array<vec3<T>, 2>& a,
const std::array<vec3<T>, 1>& b) {
return HullDistance(b, a);
}
template <typename T>
T HullDistance(
const std::array<vec3<T>, 3>& a,
const std::array<vec3<T>, 1>& b) {
return HullDistance(b, a);
}
template <typename T>
void HullHullDistanceBackward(
const std::array<vec3<T>, 1>& a,
const std::array<vec3<T>, 2>& b,
T grad_dist,
at::TensorAccessor<T, 1>&& grad_a,
at::TensorAccessor<T, 2>&& grad_b) {
using std::get;
auto res =
PointLine3DistanceBackward(get<0>(a), get<0>(b), get<1>(b), grad_dist);
IncrementPoint(std::move(grad_a), get<0>(res));
IncrementPoint(grad_b[0], get<1>(res));
IncrementPoint(grad_b[1], get<2>(res));
}
template <typename T>
void HullHullDistanceBackward(
const std::array<vec3<T>, 1>& a,
const std::array<vec3<T>, 3>& b,
T grad_dist,
at::TensorAccessor<T, 1>&& grad_a,
at::TensorAccessor<T, 2>&& grad_b) {
using std::get;
auto res = PointTriangle3DistanceBackward(
get<0>(a), get<0>(b), get<1>(b), get<2>(b), grad_dist);
IncrementPoint(std::move(grad_a), get<0>(res));
IncrementPoint(grad_b[0], get<1>(res));
IncrementPoint(grad_b[1], get<2>(res));
IncrementPoint(grad_b[2], get<3>(res));
}
template <typename T>
void HullHullDistanceBackward(
const std::array<vec3<T>, 3>& a,
const std::array<vec3<T>, 1>& b,
T grad_dist,
at::TensorAccessor<T, 2>&& grad_a,
at::TensorAccessor<T, 1>&& grad_b) {
return HullHullDistanceBackward(
b, a, grad_dist, std::move(grad_b), std::move(grad_a));
}
template <typename T>
void HullHullDistanceBackward(
const std::array<vec3<T>, 2>& a,
const std::array<vec3<T>, 1>& b,
T grad_dist,
at::TensorAccessor<T, 2>&& grad_a,
at::TensorAccessor<T, 1>&& grad_b) {
return HullHullDistanceBackward(
b, a, grad_dist, std::move(grad_b), std::move(grad_a));
}
template <int H>
void ValidateShape(const at::Tensor& as) {
if (H == 1) {
TORCH_CHECK(as.size(1) == 3);
} else {
TORCH_CHECK(as.size(2) == 3 && as.size(1) == H);
}
}
// ----------- Here begins the implementation of each top-level
// function using non-type template parameters to
// implement all the cases in one go. ----------- //
template <int H1, int H2>
std::tuple<at::Tensor, at::Tensor> HullHullDistanceForwardCpu(
const at::Tensor& as,
const at::Tensor& as_first_idx,
const at::Tensor& bs,
const at::Tensor& bs_first_idx) {
const int64_t A_N = as.size(0);
const int64_t B_N = bs.size(0);
const int64_t BATCHES = as_first_idx.size(0);
ValidateShape<H1>(as);
ValidateShape<H2>(bs);
TORCH_CHECK(bs_first_idx.size(0) == BATCHES);
// clang-format off
at::Tensor dists = at::zeros({A_N,}, as.options());
at::Tensor idxs = at::zeros({A_N,}, as_first_idx.options());
// clang-format on
auto as_a = as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto bs_a = bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto as_first_idx_a = as_first_idx.accessor<int64_t, 1>();
auto bs_first_idx_a = bs_first_idx.accessor<int64_t, 1>();
auto dists_a = dists.accessor<float, 1>();
auto idxs_a = idxs.accessor<int64_t, 1>();
int64_t a_batch_end = 0;
int64_t b_batch_start = 0, b_batch_end = 0;
int64_t batch_idx = 0;
for (int64_t a_n = 0; a_n < A_N; ++a_n) {
if (a_n == a_batch_end) {
++batch_idx;
b_batch_start = b_batch_end;
if (batch_idx == BATCHES) {
a_batch_end = std::numeric_limits<int64_t>::max();
b_batch_end = B_N;
} else {
a_batch_end = as_first_idx_a[batch_idx];
b_batch_end = bs_first_idx_a[batch_idx];
}
}
float min_dist = std::numeric_limits<float>::max();
size_t min_idx = 0;
auto a = ExtractHull<H1>(as_a[a_n]);
for (int64_t b_n = b_batch_start; b_n < b_batch_end; ++b_n) {
float dist = HullDistance(a, ExtractHull<H2>(bs_a[b_n]));
if (dist <= min_dist) {
min_dist = dist;
min_idx = b_n;
}
}
dists_a[a_n] = min_dist;
idxs_a[a_n] = min_idx;
}
return std::make_tuple(dists, idxs);
}
template <int H1, int H2>
std::tuple<at::Tensor, at::Tensor> HullHullDistanceBackwardCpu(
const at::Tensor& as,
const at::Tensor& bs,
const at::Tensor& idx_bs,
const at::Tensor& grad_dists) {
const int64_t A_N = as.size(0);
TORCH_CHECK(idx_bs.size(0) == A_N);
TORCH_CHECK(grad_dists.size(0) == A_N);
ValidateShape<H1>(as);
ValidateShape<H2>(bs);
at::Tensor grad_as = at::zeros_like(as);
at::Tensor grad_bs = at::zeros_like(bs);
auto as_a = as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto bs_a = bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto grad_as_a = grad_as.accessor < float, H1 == 1 ? 2 : 3 > ();
auto grad_bs_a = grad_bs.accessor < float, H2 == 1 ? 2 : 3 > ();
auto idx_bs_a = idx_bs.accessor<int64_t, 1>();
auto grad_dists_a = grad_dists.accessor<float, 1>();
for (int64_t a_n = 0; a_n < A_N; ++a_n) {
auto a = ExtractHull<H1>(as_a[a_n]);
auto b = ExtractHull<H2>(bs_a[idx_bs_a[a_n]]);
HullHullDistanceBackward(
a, b, grad_dists_a[a_n], grad_as_a[a_n], grad_bs_a[idx_bs_a[a_n]]);
}
return std::make_tuple(grad_as, grad_bs);
}
template <int H>
torch::Tensor PointHullArrayDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& bs) {
const int64_t P = points.size(0);
const int64_t B_N = bs.size(0);
TORCH_CHECK(points.size(1) == 3, "points must be of shape Px3");
ValidateShape<H>(bs);
at::Tensor dists = at::zeros({P, B_N}, points.options());
auto points_a = points.accessor<float, 2>();
auto bs_a = bs.accessor<float, 3>();
auto dists_a = dists.accessor<float, 2>();
for (int64_t p = 0; p < P; ++p) {
auto point = ExtractHull<1>(points_a[p]);
auto dest = dists_a[p];
for (int64_t b_n = 0; b_n < B_N; ++b_n) {
auto b = ExtractHull<H>(bs_a[b_n]);
dest[b_n] = HullDistance(point, b);
}
}
return dists;
}
template <int H>
std::tuple<at::Tensor, at::Tensor> PointHullArrayDistanceBackwardCpu(
const at::Tensor& points,
const at::Tensor& bs,
const at::Tensor& grad_dists) {
const int64_t P = points.size(0);
const int64_t B_N = bs.size(0);
TORCH_CHECK(points.size(1) == 3, "points must be of shape Px3");
ValidateShape<H>(bs);
TORCH_CHECK((grad_dists.size(0) == P) && (grad_dists.size(1) == B_N));
at::Tensor grad_points = at::zeros({P, 3}, points.options());
at::Tensor grad_bs = at::zeros({B_N, H, 3}, bs.options());
auto points_a = points.accessor<float, 2>();
auto bs_a = bs.accessor<float, 3>();
auto grad_dists_a = grad_dists.accessor<float, 2>();
auto grad_points_a = grad_points.accessor<float, 2>();
auto grad_bs_a = grad_bs.accessor<float, 3>();
for (int64_t p = 0; p < P; ++p) {
auto point = ExtractHull<1>(points_a[p]);
auto grad_point = grad_points_a[p];
auto grad_dist = grad_dists_a[p];
for (int64_t b_n = 0; b_n < B_N; ++b_n) {
auto b = ExtractHull<H>(bs_a[b_n]);
HullHullDistanceBackward(
point, b, grad_dist[b_n], std::move(grad_point), grad_bs_a[b_n]);
}
}
return std::make_tuple(grad_points, grad_bs);
}
// ---------- Here begin the exported functions ------------ //
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& tris,
const torch::Tensor& tris_first_idx) {
return HullHullDistanceForwardCpu<1, 3>(
points, points_first_idx, tris, tris_first_idx);
}
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris,
const torch::Tensor& idx_points,
const torch::Tensor& grad_dists) {
return HullHullDistanceBackwardCpu<1, 3>(
points, tris, idx_points, grad_dists);
}
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& tris,
const torch::Tensor& tris_first_idx) {
return HullHullDistanceForwardCpu<3, 1>(
tris, tris_first_idx, points, points_first_idx);
}
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris,
const torch::Tensor& idx_tris,
const torch::Tensor& grad_dists) {
auto res =
HullHullDistanceBackwardCpu<3, 1>(tris, points, idx_tris, grad_dists);
return std::make_tuple(std::get<1>(res), std::get<0>(res));
}
torch::Tensor PointEdgeArrayDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms) {
return PointHullArrayDistanceForwardCpu<2>(points, segms);
}
std::tuple<at::Tensor, at::Tensor> PointFaceArrayDistanceBackwardCpu(
const at::Tensor& points,
const at::Tensor& tris,
const at::Tensor& grad_dists) {
return PointHullArrayDistanceBackwardCpu<3>(points, tris, grad_dists);
}
torch::Tensor PointFaceArrayDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris) {
return PointHullArrayDistanceForwardCpu<3>(points, tris);
}
std::tuple<at::Tensor, at::Tensor> PointEdgeArrayDistanceBackwardCpu(
const at::Tensor& points,
const at::Tensor& segms,
const at::Tensor& grad_dists) {
return PointHullArrayDistanceBackwardCpu<2>(points, segms, grad_dists);
}
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& segms,
const torch::Tensor& segms_first_idx,
const int64_t /*max_points*/) {
return HullHullDistanceForwardCpu<1, 2>(
points, points_first_idx, segms, segms_first_idx);
}
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms,
const torch::Tensor& idx_points,
const torch::Tensor& grad_dists) {
return HullHullDistanceBackwardCpu<1, 2>(
points, segms, idx_points, grad_dists);
}
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& segms,
const torch::Tensor& segms_first_idx,
const int64_t /*max_segms*/) {
return HullHullDistanceForwardCpu<2, 1>(
segms, segms_first_idx, points, points_first_idx);
}
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms,
const torch::Tensor& idx_segms,
const torch::Tensor& grad_dists) {
auto res =
HullHullDistanceBackwardCpu<2, 1>(segms, points, idx_segms, grad_dists);
return std::make_tuple(std::get<1>(res), std::get<0>(res));
}

View File

@ -46,6 +46,13 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForwardCuda(
const int64_t max_points);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& segms,
const torch::Tensor& segms_first_idx,
const int64_t max_points);
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForward(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
@ -64,7 +71,8 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointEdgeDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_points);
}
// Backward pass for PointEdgeDistance.
@ -91,6 +99,12 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackwardCuda(
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms,
const torch::Tensor& idx_points,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackward(
const torch::Tensor& points,
const torch::Tensor& segms,
@ -107,7 +121,7 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointEdgeDistanceBackwardCpu(points, segms, idx_points, grad_dists);
}
// ****************************************************************************
@ -150,6 +164,13 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForwardCuda(
const int64_t max_segms);
#endif
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& segms,
const torch::Tensor& segms_first_idx,
const int64_t max_segms);
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForward(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
@ -168,7 +189,8 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return EdgePointDistanceForwardCpu(
points, points_first_idx, segms, segms_first_idx, max_segms);
}
// Backward pass for EdgePointDistance.
@ -195,6 +217,12 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackwardCuda(
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms,
const torch::Tensor& idx_segms,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackward(
const torch::Tensor& points,
const torch::Tensor& segms,
@ -211,7 +239,7 @@ std::tuple<torch::Tensor, torch::Tensor> EdgePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return EdgePointDistanceBackwardCpu(points, segms, idx_segms, grad_dists);
}
// ****************************************************************************
@ -242,6 +270,10 @@ torch::Tensor PointEdgeArrayDistanceForwardCuda(
const torch::Tensor& segms);
#endif
torch::Tensor PointEdgeArrayDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms);
torch::Tensor PointEdgeArrayDistanceForward(
const torch::Tensor& points,
const torch::Tensor& segms) {
@ -254,7 +286,7 @@ torch::Tensor PointEdgeArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointEdgeArrayDistanceForwardCpu(points, segms);
}
// Backward pass for PointEdgeArrayDistance.
@ -277,6 +309,11 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackwardCuda(
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& segms,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackward(
const torch::Tensor& points,
const torch::Tensor& segms,
@ -291,5 +328,5 @@ std::tuple<torch::Tensor, torch::Tensor> PointEdgeArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointEdgeArrayDistanceBackwardCpu(points, segms, grad_dists);
}

View File

@ -19,7 +19,7 @@
// points_first_idx: LongTensor of shape (N,) indicating the first point
// index for each example in the batch
// tris: FloatTensor of shape (T, 3, 3) of the triangular faces. The t-th
// triangulare face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
// triangular face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
// tris_first_idx: LongTensor of shape (N,) indicating the first face
// index for each example in the batch
// max_points: Scalar equal to max(P_i) for i in [0, N - 1] containing
@ -48,6 +48,12 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForwardCuda(
const int64_t max_points);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& tris,
const torch::Tensor& tris_first_idx);
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForward(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
@ -66,7 +72,8 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointFaceDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx);
}
// Backward pass for PointFaceDistance.
@ -92,6 +99,11 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackwardCuda(
const torch::Tensor& idx_points,
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris,
const torch::Tensor& idx_points,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackward(
const torch::Tensor& points,
@ -109,7 +121,7 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointFaceDistanceBackwardCpu(points, tris, idx_points, grad_dists);
}
// ****************************************************************************
@ -124,7 +136,7 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceDistanceBackward(
// points_first_idx: LongTensor of shape (N,) indicating the first point
// index for each example in the batch
// tris: FloatTensor of shape (T, 3, 3) of the triangular faces. The t-th
// triangulare face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
// triangular face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
// tris_first_idx: LongTensor of shape (N,) indicating the first face
// index for each example in the batch
// max_tris: Scalar equal to max(T_i) for i in [0, N - 1] containing
@ -149,9 +161,15 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForwardCuda(
const torch::Tensor& points_first_idx,
const torch::Tensor& tris,
const torch::Tensor& tris_first_idx,
const int64_t max_tros);
const int64_t max_tris);
#endif
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
const torch::Tensor& tris,
const torch::Tensor& tris_first_idx);
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForward(
const torch::Tensor& points,
const torch::Tensor& points_first_idx,
@ -170,7 +188,8 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return FacePointDistanceForwardCpu(
points, points_first_idx, tris, tris_first_idx);
}
// Backward pass for FacePointDistance.
@ -197,6 +216,12 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackwardCuda(
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris,
const torch::Tensor& idx_tris,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackward(
const torch::Tensor& points,
const torch::Tensor& tris,
@ -213,7 +238,7 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return FacePointDistanceBackwardCpu(points, tris, idx_tris, grad_dists);
}
// ****************************************************************************
@ -226,7 +251,7 @@ std::tuple<torch::Tensor, torch::Tensor> FacePointDistanceBackward(
// Args:
// points: FloatTensor of shape (P, 3)
// tris: FloatTensor of shape (T, 3, 3) of the triangular faces. The t-th
// triangulare face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
// triangular face is spanned by (tris[t, 0], tris[t, 1], tris[t, 2])
//
// Returns:
// dists: FloatTensor of shape (P, T), where dists[p, t] is the squared
@ -245,6 +270,10 @@ torch::Tensor PointFaceArrayDistanceForwardCuda(
const torch::Tensor& tris);
#endif
torch::Tensor PointFaceArrayDistanceForwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris);
torch::Tensor PointFaceArrayDistanceForward(
const torch::Tensor& points,
const torch::Tensor& tris) {
@ -257,7 +286,7 @@ torch::Tensor PointFaceArrayDistanceForward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointFaceArrayDistanceForwardCpu(points, tris);
}
// Backward pass for PointFaceArrayDistance.
@ -278,6 +307,10 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackwardCuda(
const torch::Tensor& tris,
const torch::Tensor& grad_dists);
#endif
std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackwardCpu(
const torch::Tensor& points,
const torch::Tensor& tris,
const torch::Tensor& grad_dists);
std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackward(
const torch::Tensor& points,
@ -293,5 +326,5 @@ std::tuple<torch::Tensor, torch::Tensor> PointFaceArrayDistanceBackward(
AT_ERROR("Not compiled with GPU support.");
#endif
}
AT_ERROR("No CPU implementation.");
return PointFaceArrayDistanceBackwardCpu(points, tris, grad_dists);
}

View File

@ -2,6 +2,7 @@
#include <ATen/ATen.h>
#include <algorithm>
#include <tuple>
#include <type_traits>
#include "vec2.h"
#include "vec3.h"
@ -281,6 +282,23 @@ T PointLineDistanceForward(
return dot(p - p_proj, p - p_proj);
}
template <typename T>
T PointLine3DistanceForward(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1) {
const vec3<T> v1v0 = v1 - v0;
const T l2 = dot(v1v0, v1v0);
if (l2 <= kEpsilon) {
return dot(p - v1, p - v1);
}
const T t = dot(v1v0, p - v0) / l2;
const T tt = std::min(std::max(t, 0.00f), 1.00f);
const vec3<T> p_proj = v0 + tt * v1v0;
return dot(p - p_proj, p - p_proj);
}
// Backward pass for point to line distance in 2D.
//
// Args:
@ -314,6 +332,51 @@ inline std::tuple<vec2<T>, vec2<T>, vec2<T>> PointLineDistanceBackward(
return std::make_tuple(grad_p, grad_v0, grad_v1);
}
template <typename T>
std::tuple<vec3<T>, vec3<T>, vec3<T>> PointLine3DistanceBackward(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1,
const T& grad_dist) {
const vec3<T> v1v0 = v1 - v0;
const vec3<T> pv0 = p - v0;
const T t_bot = dot(v1v0, v1v0);
const T t_top = dot(v1v0, pv0);
vec3<T> grad_p{0.0f, 0.0f, 0.0f};
vec3<T> grad_v0{0.0f, 0.0f, 0.0f};
vec3<T> grad_v1{0.0f, 0.0f, 0.0f};
const T tt = t_top / t_bot;
if (t_bot < kEpsilon) {
// if t_bot small, then v0 == v1,
// and dist = 0.5 * dot(pv0, pv0) + 0.5 * dot(pv1, pv1)
grad_p = grad_dist * 2.0f * pv0;
grad_v0 = -0.5f * grad_p;
grad_v1 = grad_v0;
} else if (tt < 0.0f) {
grad_p = grad_dist * 2.0f * pv0;
grad_v0 = -1.0f * grad_p;
// no gradients wrt v1
} else if (tt > 1.0f) {
grad_p = grad_dist * 2.0f * (p - v1);
grad_v1 = -1.0f * grad_p;
// no gradients wrt v0
} else {
const vec3<T> p_proj = v0 + tt * v1v0;
const vec3<T> diff = p - p_proj;
const vec3<T> grad_base = grad_dist * 2.0f * diff;
grad_p = grad_base - dot(grad_base, v1v0) * v1v0 / t_bot;
const vec3<T> dtt_v0 = (-1.0f * v1v0 - pv0 + 2.0f * tt * v1v0) / t_bot;
grad_v0 = (-1.0f + tt) * grad_base - dot(grad_base, v1v0) * dtt_v0;
const vec3<T> dtt_v1 = (pv0 - 2.0f * tt * v1v0) / t_bot;
grad_v1 = -dot(grad_base, v1v0) * dtt_v1 - tt * grad_base;
}
return std::make_tuple(grad_p, grad_v0, grad_v1);
}
// The forward pass for calculating the shortest distance between a point
// and a triangle.
// Ref: https://www.randygaul.net/2014/07/23/distance-point-to-line-segment/
@ -396,3 +459,226 @@ PointTriangleDistanceBackward(
return std::make_tuple(grad_p, grad_v0, grad_v1, grad_v2);
}
// Computes the squared distance of a point p relative to a triangle (v0, v1,
// v2). If the point's projection p0 on the plane spanned by (v0, v1, v2) is
// inside the triangle with vertices (v0, v1, v2), then the returned value is
// the squared distance of p to its projection p0. Otherwise, the returned value
// is the smallest squared distance of p from the line segments (v0, v1), (v0,
// v2) and (v1, v2).
//
// Args:
// p: vec3 coordinates of a point
// v0, v1, v2: vec3 coordinates of the triangle vertices
//
// Returns:
// dist: Float of the squared distance
//
const float vEpsilon = 1e-8;
template <typename T>
vec3<T> BarycentricCoords3Forward(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1,
const vec3<T>& v2) {
vec3<T> p0 = v1 - v0;
vec3<T> p1 = v2 - v0;
vec3<T> p2 = p - v0;
const T d00 = dot(p0, p0);
const T d01 = dot(p0, p1);
const T d11 = dot(p1, p1);
const T d20 = dot(p2, p0);
const T d21 = dot(p2, p1);
const T denom = d00 * d11 - d01 * d01 + kEpsilon;
const T w1 = (d11 * d20 - d01 * d21) / denom;
const T w2 = (d00 * d21 - d01 * d20) / denom;
const T w0 = 1.0f - w1 - w2;
return vec3<T>(w0, w1, w2);
}
// Checks whether the point p is inside the triangle (v0, v1, v2).
// A point is inside the triangle, if all barycentric coordinates
// wrt the triangle are >= 0 & <= 1.
//
// NOTE that this function assumes that p lives on the space spanned
// by (v0, v1, v2).
// TODO(gkioxari) explicitly check whether p is coplanar with (v0, v1, v2)
// and throw an error if check fails
//
// Args:
// p: vec3 coordinates of a point
// v0, v1, v2: vec3 coordinates of the triangle vertices
//
// Returns:
// inside: bool indicating wether p is inside triangle
//
template <typename T>
static bool IsInsideTriangle(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1,
const vec3<T>& v2) {
vec3<T> bary = BarycentricCoords3Forward(p, v0, v1, v2);
bool x_in = 0.0f <= bary.x && bary.x <= 1.0f;
bool y_in = 0.0f <= bary.y && bary.y <= 1.0f;
bool z_in = 0.0f <= bary.z && bary.z <= 1.0f;
bool inside = x_in && y_in && z_in;
return inside;
}
template <typename T>
T PointTriangle3DistanceForward(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1,
const vec3<T>& v2) {
vec3<T> normal = cross(v2 - v0, v1 - v0);
const T norm_normal = norm(normal);
normal = normal / (norm_normal + vEpsilon);
// p0 is the projection of p on the plane spanned by (v0, v1, v2)
// i.e. p0 = p + t * normal, s.t. (p0 - v0) is orthogonal to normal
const T t = dot(v0 - p, normal);
const vec3<T> p0 = p + t * normal;
bool is_inside = IsInsideTriangle(p0, v0, v1, v2);
T dist = 0.0f;
if ((is_inside) && (norm_normal > kEpsilon)) {
// if projection p0 is inside triangle spanned by (v0, v1, v2)
// then distance is equal to norm(p0 - p)^2
dist = t * t;
} else {
const float e01 = PointLine3DistanceForward(p, v0, v1);
const float e02 = PointLine3DistanceForward(p, v0, v2);
const float e12 = PointLine3DistanceForward(p, v1, v2);
dist = (e01 > e02) ? e02 : e01;
dist = (dist > e12) ? e12 : dist;
}
return dist;
}
template <typename T>
std::tuple<vec3<T>, vec3<T>>
cross_backward(const vec3<T>& a, const vec3<T>& b, const vec3<T>& grad_cross) {
const float grad_ax = -grad_cross.y * b.z + grad_cross.z * b.y;
const float grad_ay = grad_cross.x * b.z - grad_cross.z * b.x;
const float grad_az = -grad_cross.x * b.y + grad_cross.y * b.x;
const vec3<T> grad_a = vec3<T>(grad_ax, grad_ay, grad_az);
const float grad_bx = grad_cross.y * a.z - grad_cross.z * a.y;
const float grad_by = -grad_cross.x * a.z + grad_cross.z * a.x;
const float grad_bz = grad_cross.x * a.y - grad_cross.y * a.x;
const vec3<T> grad_b = vec3<T>(grad_bx, grad_by, grad_bz);
return std::make_tuple(grad_a, grad_b);
}
template <typename T>
vec3<T> normalize_backward(const vec3<T>& a, const vec3<T>& grad_normz) {
const float a_norm = norm(a) + vEpsilon;
const vec3<T> out = a / a_norm;
const float grad_ax = grad_normz.x * (1.0f - out.x * out.x) / a_norm +
grad_normz.y * (-out.x * out.y) / a_norm +
grad_normz.z * (-out.x * out.z) / a_norm;
const float grad_ay = grad_normz.x * (-out.x * out.y) / a_norm +
grad_normz.y * (1.0f - out.y * out.y) / a_norm +
grad_normz.z * (-out.y * out.z) / a_norm;
const float grad_az = grad_normz.x * (-out.x * out.z) / a_norm +
grad_normz.y * (-out.y * out.z) / a_norm +
grad_normz.z * (1.0f - out.z * out.z) / a_norm;
return vec3<T>(grad_ax, grad_ay, grad_az);
}
// The backward pass for computing the squared distance of a point
// to the triangle (v0, v1, v2).
//
// Args:
// p: xyz coordinates of a point
// v0, v1, v2: xyz coordinates of the triangle vertices
// grad_dist: Float of the gradient wrt dist
//
// Returns:
// tuple of gradients for the point and triangle:
// (float3 grad_p, float3 grad_v0, float3 grad_v1, float3 grad_v2)
//
template <typename T>
static std::tuple<vec3<T>, vec3<T>, vec3<T>, vec3<T>>
PointTriangle3DistanceBackward(
const vec3<T>& p,
const vec3<T>& v0,
const vec3<T>& v1,
const vec3<T>& v2,
const T& grad_dist) {
const vec3<T> v2v0 = v2 - v0;
const vec3<T> v1v0 = v1 - v0;
const vec3<T> v0p = v0 - p;
vec3<T> raw_normal = cross(v2v0, v1v0);
const T norm_normal = norm(raw_normal);
vec3<T> normal = raw_normal / (norm_normal + vEpsilon);
// p0 is the projection of p on the plane spanned by (v0, v1, v2)
// i.e. p0 = p + t * normal, s.t. (p0 - v0) is orthogonal to normal
const T t = dot(v0 - p, normal);
const vec3<T> p0 = p + t * normal;
const vec3<T> diff = t * normal;
bool is_inside = IsInsideTriangle(p0, v0, v1, v2);
vec3<T> grad_p(0.0f, 0.0f, 0.0f);
vec3<T> grad_v0(0.0f, 0.0f, 0.0f);
vec3<T> grad_v1(0.0f, 0.0f, 0.0f);
vec3<T> grad_v2(0.0f, 0.0f, 0.0f);
if ((is_inside) && (norm_normal > kEpsilon)) {
// derivative of dist wrt p
grad_p = -2.0f * grad_dist * t * normal;
// derivative of dist wrt normal
const vec3<T> grad_normal = 2.0f * grad_dist * t * (v0p + diff);
// derivative of dist wrt raw_normal
const vec3<T> grad_raw_normal = normalize_backward(raw_normal, grad_normal);
// derivative of dist wrt v2v0 and v1v0
const auto grad_cross = cross_backward(v2v0, v1v0, grad_raw_normal);
const vec3<T> grad_cross_v2v0 = std::get<0>(grad_cross);
const vec3<T> grad_cross_v1v0 = std::get<1>(grad_cross);
grad_v0 =
grad_dist * 2.0f * t * normal - (grad_cross_v2v0 + grad_cross_v1v0);
grad_v1 = grad_cross_v1v0;
grad_v2 = grad_cross_v2v0;
} else {
const T e01 = PointLine3DistanceForward(p, v0, v1);
const T e02 = PointLine3DistanceForward(p, v0, v2);
const T e12 = PointLine3DistanceForward(p, v1, v2);
if ((e01 <= e02) && (e01 <= e12)) {
// e01 is smallest
const auto grads = PointLine3DistanceBackward(p, v0, v1, grad_dist);
grad_p = std::get<0>(grads);
grad_v0 = std::get<1>(grads);
grad_v1 = std::get<2>(grads);
} else if ((e02 <= e01) && (e02 <= e12)) {
// e02 is smallest
const auto grads = PointLine3DistanceBackward(p, v0, v2, grad_dist);
grad_p = std::get<0>(grads);
grad_v0 = std::get<1>(grads);
grad_v2 = std::get<2>(grads);
} else if ((e12 <= e01) && (e12 <= e02)) {
// e12 is smallest
const auto grads = PointLine3DistanceBackward(p, v1, v2, grad_dist);
grad_p = std::get<0>(grads);
grad_v1 = std::get<1>(grads);
grad_v2 = std::get<2>(grads);
}
}
return std::make_tuple(grad_p, grad_v0, grad_v1, grad_v2);
}

View File

@ -56,6 +56,11 @@ inline vec3<T> cross(const vec3<T>& a, const vec3<T>& b) {
a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
template <typename T>
inline T norm(const vec3<T>& a) {
return sqrt(dot(a, a));
}
template <typename T>
std::ostream& operator<<(std::ostream& os, const vec3<T>& v) {
os << "vec3(" << v.x << ", " << v.y << ", " << v.z << ")";

View File

@ -211,6 +211,9 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
same = torch.rand((E,), dtype=torch.float32, device=device) > 0.5
edges[same, 1] = edges[same, 0].clone().detach()
points_cpu = points.clone().cpu()
edges_cpu = edges.clone().cpu()
points.requires_grad = True
edges.requires_grad = True
grad_dists = torch.rand((P, E), dtype=torch.float32, device=device)
@ -224,22 +227,29 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Cuda Forward Implementation
dists_cuda = _C.point_edge_array_dist_forward(points, edges)
dists_cpu = _C.point_edge_array_dist_forward(points_cpu, edges_cpu)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# CUDA Bacwkard Implementation
grad_points_cuda, grad_edges_cuda = _C.point_edge_array_dist_backward(
points, edges, grad_dists
)
grad_points_cpu, grad_edges_cpu = _C.point_edge_array_dist_backward(
points_cpu, edges_cpu, grad_dists.cpu()
)
dists_naive.backward(grad_dists)
grad_points_naive = points.grad
grad_edges_naive = edges.grad
grad_points_naive = points.grad.cpu()
grad_edges_naive = edges.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu())
self.assertClose(grad_edges_naive.cpu(), grad_edges_cuda.cpu())
self.assertClose(grad_points_naive, grad_points_cuda.cpu())
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu())
self.assertClose(grad_points_naive, grad_points_cpu)
self.assertClose(grad_edges_naive, grad_edges_cpu)
def test_point_edge_distance(self):
"""
@ -270,7 +280,7 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
(points_packed.shape[0],), dtype=torch.float32, device=device
)
# Cuda Implementation: forrward
# Cuda Implementation: forward
dists_cuda, idx_cuda = _C.point_edge_dist_forward(
points_packed, points_first_idx, edges_packed, edges_first_idx, max_p
)
@ -278,6 +288,20 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
grad_points_cuda, grad_edges_cuda = _C.point_edge_dist_backward(
points_packed, edges_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.point_edge_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
edges_packed.cpu(),
edges_first_idx.cpu(),
max_p,
)
# Cpu Implementation: backward
# Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
grad_points_cpu, grad_edges_cpu = _C.point_edge_dist_backward(
points_packed.cpu(), edges_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
)
# Naive Implementation: forward
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
@ -312,15 +336,18 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_edges_naive = edges_packed.grad
grad_edges_naive = edges_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_edges_naive.cpu(), grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
def test_edge_point_distance(self):
"""
@ -361,6 +388,20 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
points_packed, edges_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.edge_point_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
edges_packed.cpu(),
edges_first_idx.cpu(),
max_e,
)
# Cpu Implementation: backward
grad_points_cpu, grad_edges_cpu = _C.edge_point_dist_backward(
points_packed.cpu(), edges_packed.cpu(), idx_cpu, grad_dists.cpu()
)
# Naive Implementation: forward
edges_list = packed_to_list(edges_packed, meshes.num_edges_per_mesh().tolist())
dists_naive = []
@ -395,15 +436,18 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_edges_naive = edges_packed.grad
grad_edges_naive = edges_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_edges_naive.cpu(), grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_edges_naive, grad_edges_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_edges_naive, grad_edges_cpu, atol=5e-7)
def test_point_mesh_edge_distance(self):
"""
@ -483,6 +527,8 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
device = get_random_cuda_device()
points = torch.rand((P, 3), dtype=torch.float32, device=device)
tris = torch.rand((T, 3, 3), dtype=torch.float32, device=device)
points_cpu = points.clone().cpu()
tris_cpu = tris.clone().cpu()
points.requires_grad = True
tris.requires_grad = True
@ -502,23 +548,30 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Naive Backward
dists_naive.backward(grad_dists)
grad_points_naive = points.grad
grad_tris_naive = tris.grad
grad_points_naive = points.grad.cpu()
grad_tris_naive = tris.grad.cpu()
# Cuda Forward Implementation
dists_cuda = _C.point_face_array_dist_forward(points, tris)
dists_cpu = _C.point_face_array_dist_forward(points_cpu, tris_cpu)
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# CUDA Backward Implementation
grad_points_cuda, grad_tris_cuda = _C.point_face_array_dist_backward(
points, tris, grad_dists
)
grad_points_cpu, grad_tris_cpu = _C.point_face_array_dist_backward(
points_cpu, tris_cpu, grad_dists.cpu()
)
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu())
self.assertClose(grad_tris_naive.cpu(), grad_tris_cuda.cpu(), atol=5e-6)
self.assertClose(grad_points_naive, grad_points_cuda.cpu())
self.assertClose(grad_tris_naive, grad_tris_cuda.cpu(), atol=5e-6)
self.assertClose(grad_points_naive, grad_points_cpu)
self.assertClose(grad_tris_naive, grad_tris_cpu, atol=5e-6)
def test_point_face_distance(self):
"""
@ -559,6 +612,21 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
points_packed, faces_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.point_face_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
faces_packed.cpu(),
faces_first_idx.cpu(),
max_p,
)
# Cpu Implementation: backward
# Note that using idx_cpu doesn't pass - there seems to be a problem with tied results.
grad_points_cpu, grad_faces_cpu = _C.point_face_dist_backward(
points_packed.cpu(), faces_packed.cpu(), idx_cuda.cpu(), grad_dists.cpu()
)
# Naive Implementation: forward
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
dists_naive = []
@ -593,15 +661,18 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
grad_points_naive = torch.cat([cloud.grad for cloud in pcls.points_list()])
grad_faces_naive = faces_packed.grad
grad_faces_naive = faces_packed.grad.cpu()
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7)
self.assertClose(grad_faces_naive, grad_faces_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_faces_naive, grad_faces_cpu, atol=5e-7)
def test_face_point_distance(self):
"""
@ -642,6 +713,20 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
points_packed, faces_packed, idx_cuda, grad_dists
)
# Cpu Implementation: forward
dists_cpu, idx_cpu = _C.face_point_dist_forward(
points_packed.cpu(),
points_first_idx.cpu(),
faces_packed.cpu(),
faces_first_idx.cpu(),
max_f,
)
# Cpu Implementation: backward
grad_points_cpu, grad_faces_cpu = _C.face_point_dist_backward(
points_packed.cpu(), faces_packed.cpu(), idx_cpu, grad_dists.cpu()
)
# Naive Implementation: forward
faces_list = packed_to_list(faces_packed, meshes.num_faces_per_mesh().tolist())
dists_naive = []
@ -676,6 +761,7 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Compare
self.assertClose(dists_naive.cpu(), dists_cuda.cpu())
self.assertClose(dists_naive.cpu(), dists_cpu)
# Naive Implementation: backward
dists_naive.backward(grad_dists)
@ -685,6 +771,8 @@ class TestPointMeshDistance(TestCaseMixin, unittest.TestCase):
# Compare
self.assertClose(grad_points_naive.cpu(), grad_points_cuda.cpu(), atol=1e-7)
self.assertClose(grad_faces_naive.cpu(), grad_faces_cuda.cpu(), atol=5e-7)
self.assertClose(grad_points_naive.cpu(), grad_points_cpu, atol=1e-7)
self.assertClose(grad_faces_naive.cpu(), grad_faces_cpu, atol=5e-7)
def test_point_mesh_face_distance(self):
"""