mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Annotate dunder functions
Summary: Annotate the (return type of the) following dunder functions across the codebase: `__init__()`, `__len__()`, `__getitem__()` Reviewed By: nikhilaravi Differential Revision: D29001801 fbshipit-source-id: 928d9e1c417ffe01ab8c0445311287786e997c7c
This commit is contained in:
parent
35855bf860
commit
64289a491d
@ -36,7 +36,7 @@ class ListDataset(Dataset):
|
||||
A simple dataset made of a list of entries.
|
||||
"""
|
||||
|
||||
def __init__(self, entries: List):
|
||||
def __init__(self, entries: List) -> None:
|
||||
"""
|
||||
Args:
|
||||
entries: The list of dataset entries.
|
||||
@ -45,7 +45,7 @@ class ListDataset(Dataset):
|
||||
|
||||
def __len__(
|
||||
self,
|
||||
):
|
||||
) -> int:
|
||||
return len(self._entries)
|
||||
|
||||
def __getitem__(self, index):
|
||||
|
@ -22,7 +22,7 @@ class AverageMeter:
|
||||
Tracks the exact history of the added values in every epoch.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Initialize the structure with empty history and zero-ed moving average.
|
||||
"""
|
||||
@ -110,7 +110,7 @@ class Stats:
|
||||
verbose: bool = False,
|
||||
epoch: int = -1,
|
||||
plot_file: Optional[str] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
log_vars: The list of variable names to be logged.
|
||||
|
@ -64,7 +64,7 @@ class R2N2(ShapeNetBase): # pragma: no cover
|
||||
voxels_rel_path: str = "ShapeNetVoxels",
|
||||
load_textures: bool = True,
|
||||
texture_resolution: int = 4,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Store each object's synset id and models id the given directories.
|
||||
|
||||
|
@ -437,7 +437,7 @@ class BlenderCamera(CamerasBase): # pragma: no cover
|
||||
(which uses Blender for rendering the views for each model).
|
||||
"""
|
||||
|
||||
def __init__(self, R=r, T=t, K=k, device: Device = "cpu"):
|
||||
def __init__(self, R=r, T=t, K=k, device: Device = "cpu") -> None:
|
||||
"""
|
||||
Args:
|
||||
R: Rotation matrix of shape (N, 3, 3).
|
||||
|
@ -31,7 +31,7 @@ class ShapeNetCore(ShapeNetBase): # pragma: no cover
|
||||
version: int = 1,
|
||||
load_textures: bool = True,
|
||||
texture_resolution: int = 4,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Store each object's synset id and models id from data_dir.
|
||||
|
||||
|
@ -30,7 +30,7 @@ class ShapeNetBase(torch.utils.data.Dataset): # pragma: no cover
|
||||
and __getitem__ need to be implemented.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Set up lists of synset_ids and model_ids.
|
||||
"""
|
||||
@ -44,7 +44,7 @@ class ShapeNetBase(torch.utils.data.Dataset): # pragma: no cover
|
||||
self.load_textures = True
|
||||
self.texture_resolution = 4
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
Return number of total models in the loaded dataset.
|
||||
"""
|
||||
|
@ -187,7 +187,7 @@ def _make_node_transform(node: Dict[str, Any]) -> Transform3d:
|
||||
|
||||
|
||||
class _GLTFLoader:
|
||||
def __init__(self, stream: BinaryIO):
|
||||
def __init__(self, stream: BinaryIO) -> None:
|
||||
self._json_data = None
|
||||
# Map from buffer index to (decoded) binary data
|
||||
self._binary_data = {}
|
||||
@ -539,7 +539,7 @@ class MeshGlbFormat(MeshFormatInterpreter):
|
||||
used which does not match the semantics of the standard.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.known_suffixes = (".glb",)
|
||||
|
||||
def read(
|
||||
|
@ -291,7 +291,7 @@ def load_objs_as_meshes(
|
||||
|
||||
|
||||
class MeshObjFormat(MeshFormatInterpreter):
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.known_suffixes = (".obj",)
|
||||
|
||||
def read(
|
||||
|
@ -419,7 +419,7 @@ class MeshOffFormat(MeshFormatInterpreter):
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.known_suffixes = (".off",)
|
||||
|
||||
def read(
|
||||
|
@ -63,7 +63,7 @@ class IO:
|
||||
self,
|
||||
include_default_formats: bool = True,
|
||||
path_manager: Optional[PathManager] = None,
|
||||
):
|
||||
) -> None:
|
||||
if path_manager is None:
|
||||
self.path_manager = PathManager()
|
||||
else:
|
||||
|
@ -66,7 +66,7 @@ class _PlyElementType:
|
||||
self.name: (str) name of the element
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, count: int):
|
||||
def __init__(self, name: str, count: int) -> None:
|
||||
self.name = name
|
||||
self.count = count
|
||||
self.properties: List[_Property] = []
|
||||
@ -130,7 +130,7 @@ class _PlyElementType:
|
||||
|
||||
|
||||
class _PlyHeader:
|
||||
def __init__(self, f):
|
||||
def __init__(self, f) -> None:
|
||||
"""
|
||||
Load a header of a Ply file from a file-like object.
|
||||
Members:
|
||||
@ -1232,7 +1232,7 @@ def save_ply(
|
||||
|
||||
|
||||
class MeshPlyFormat(MeshFormatInterpreter):
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.known_suffixes = (".ply",)
|
||||
|
||||
def read(
|
||||
@ -1313,7 +1313,7 @@ class MeshPlyFormat(MeshFormatInterpreter):
|
||||
|
||||
|
||||
class PointcloudPlyFormat(PointcloudFormatInterpreter):
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
self.known_suffixes = (".ply",)
|
||||
|
||||
def read(
|
||||
|
@ -21,7 +21,7 @@ class GraphConv(nn.Module):
|
||||
output_dim: int,
|
||||
init: str = "normal",
|
||||
directed: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
input_dim: Number of input features per vertex.
|
||||
|
@ -15,7 +15,7 @@ EPS = 0.00001
|
||||
|
||||
|
||||
class Cube:
|
||||
def __init__(self, bfl_vertex: Tuple[int, int, int], spacing: int = 1):
|
||||
def __init__(self, bfl_vertex: Tuple[int, int, int], spacing: int = 1) -> None:
|
||||
"""
|
||||
Initializes a cube given the bottom front left vertex coordinate
|
||||
and the cube spacing
|
||||
|
@ -26,7 +26,7 @@ class SubdivideMeshes(nn.Module):
|
||||
but different vertex positions.
|
||||
"""
|
||||
|
||||
def __init__(self, meshes=None):
|
||||
def __init__(self, meshes=None) -> None:
|
||||
"""
|
||||
Args:
|
||||
meshes: Meshes object or None. If a meshes object is provided,
|
||||
|
@ -364,7 +364,7 @@ class FoVPerspectiveCameras(CamerasBase):
|
||||
T=_T,
|
||||
K=None,
|
||||
device: Device = "cpu",
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
Args:
|
||||
@ -848,7 +848,7 @@ class PerspectiveCameras(CamerasBase):
|
||||
K=None,
|
||||
device="cpu",
|
||||
image_size=((-1, -1),),
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
Args:
|
||||
@ -1013,7 +1013,7 @@ class OrthographicCameras(CamerasBase):
|
||||
K=None,
|
||||
device="cpu",
|
||||
image_size=((-1, -1),),
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
Args:
|
||||
|
@ -49,7 +49,7 @@ class EmissionAbsorptionRaymarcher(torch.nn.Module):
|
||||
elements along the ray direction.
|
||||
"""
|
||||
|
||||
def __init__(self, surface_thickness: int = 1):
|
||||
def __init__(self, surface_thickness: int = 1) -> None:
|
||||
"""
|
||||
Args:
|
||||
surface_thickness: Denotes the overlap between the absorption
|
||||
@ -128,7 +128,7 @@ class AbsorptionOnlyRaymarcher(torch.nn.Module):
|
||||
It then returns `opacities = 1 - total_transmission`.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def forward(
|
||||
|
@ -66,7 +66,7 @@ class GridRaysampler(torch.nn.Module):
|
||||
n_pts_per_ray: int,
|
||||
min_depth: float,
|
||||
max_depth: float,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
min_x: The leftmost x-coordinate of each ray's source pixel's center.
|
||||
@ -150,7 +150,7 @@ class NDCGridRaysampler(GridRaysampler):
|
||||
n_pts_per_ray: int,
|
||||
min_depth: float,
|
||||
max_depth: float,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
image_width: The horizontal size of the image grid.
|
||||
@ -192,7 +192,7 @@ class MonteCarloRaysampler(torch.nn.Module):
|
||||
n_pts_per_ray: int,
|
||||
min_depth: float,
|
||||
max_depth: float,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
min_x: The smallest x-coordinate of each ray's source pixel.
|
||||
|
@ -105,7 +105,7 @@ class ImplicitRenderer(torch.nn.Module):
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, raysampler: Callable, raymarcher: Callable):
|
||||
def __init__(self, raysampler: Callable, raymarcher: Callable) -> None:
|
||||
"""
|
||||
Args:
|
||||
raysampler: A `Callable` that takes as input scene cameras
|
||||
@ -206,7 +206,7 @@ class VolumeRenderer(torch.nn.Module):
|
||||
|
||||
def __init__(
|
||||
self, raysampler: Callable, raymarcher: Callable, sample_mode: str = "bilinear"
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
raysampler: A `Callable` that takes as input scene cameras
|
||||
@ -256,7 +256,7 @@ class VolumeSampler(torch.nn.Module):
|
||||
at 3D points sampled along projection rays.
|
||||
"""
|
||||
|
||||
def __init__(self, volumes: Volumes, sample_mode: str = "bilinear"):
|
||||
def __init__(self, volumes: Volumes, sample_mode: str = "bilinear") -> None:
|
||||
"""
|
||||
Args:
|
||||
volumes: An instance of the `Volumes` class representing a
|
||||
|
@ -164,7 +164,7 @@ class DirectionalLights(TensorProperties):
|
||||
specular_color=((0.2, 0.2, 0.2),),
|
||||
direction=((0, 1, 0),),
|
||||
device: Device = "cpu",
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ambient_color: RGB color of the ambient component.
|
||||
@ -225,7 +225,7 @@ class PointLights(TensorProperties):
|
||||
specular_color=((0.2, 0.2, 0.2),),
|
||||
location=((0, 1, 0),),
|
||||
device: Device = "cpu",
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ambient_color: RGB color of the ambient component
|
||||
@ -294,7 +294,7 @@ class AmbientLights(TensorProperties):
|
||||
not used in rendering.
|
||||
"""
|
||||
|
||||
def __init__(self, *, ambient_color=None, device: Device = "cpu"):
|
||||
def __init__(self, *, ambient_color=None, device: Device = "cpu") -> None:
|
||||
"""
|
||||
If ambient_color is provided, it should be a sequence of
|
||||
triples of floats.
|
||||
|
@ -24,7 +24,7 @@ class Materials(TensorProperties):
|
||||
specular_color=((1, 1, 1),),
|
||||
shininess=64,
|
||||
device: Device = "cpu",
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
ambient_color: RGB ambient reflectivity of the material
|
||||
|
@ -84,7 +84,7 @@ class ClippedFaces:
|
||||
barycentric_conversion: Optional[torch.Tensor] = None,
|
||||
faces_clipped_to_conversion_idx: Optional[torch.Tensor] = None,
|
||||
clipped_faces_neighbor_idx: Optional[torch.Tensor] = None,
|
||||
):
|
||||
) -> None:
|
||||
self.face_verts = face_verts
|
||||
self.mesh_to_face_first_idx = mesh_to_face_first_idx
|
||||
self.num_faces_per_mesh = num_faces_per_mesh
|
||||
@ -139,7 +139,7 @@ class ClipFrustum:
|
||||
perspective_correct: bool = False,
|
||||
cull: bool = True,
|
||||
z_clip_value: Optional[float] = None,
|
||||
):
|
||||
) -> None:
|
||||
self.left = left
|
||||
self.right = right
|
||||
self.top = top
|
||||
|
@ -49,7 +49,7 @@ class RasterizationSettings:
|
||||
cull_backfaces: bool = False,
|
||||
z_clip_value: Optional[float] = None,
|
||||
cull_to_frustum: bool = False,
|
||||
):
|
||||
) -> None:
|
||||
self.image_size = image_size
|
||||
self.blur_radius = blur_radius
|
||||
self.faces_per_pixel = faces_per_pixel
|
||||
@ -68,7 +68,7 @@ class MeshRasterizer(nn.Module):
|
||||
Meshes.
|
||||
"""
|
||||
|
||||
def __init__(self, cameras=None, raster_settings=None):
|
||||
def __init__(self, cameras=None, raster_settings=None) -> None:
|
||||
"""
|
||||
Args:
|
||||
cameras: A cameras object which has a `transform_points` method
|
||||
|
@ -32,7 +32,7 @@ class MeshRenderer(nn.Module):
|
||||
function.
|
||||
"""
|
||||
|
||||
def __init__(self, rasterizer, shader):
|
||||
def __init__(self, rasterizer, shader) -> None:
|
||||
super().__init__()
|
||||
self.rasterizer = rasterizer
|
||||
self.shader = shader
|
||||
@ -76,7 +76,7 @@ class MeshRendererWithFragments(nn.Module):
|
||||
depth = fragments.zbuf
|
||||
"""
|
||||
|
||||
def __init__(self, rasterizer, shader):
|
||||
def __init__(self, rasterizer, shader) -> None:
|
||||
super().__init__()
|
||||
self.rasterizer = rasterizer
|
||||
self.shader = shader
|
||||
|
@ -51,7 +51,7 @@ class HardPhongShader(nn.Module):
|
||||
lights=None,
|
||||
materials=None,
|
||||
blend_params=None,
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lights = lights if lights is not None else PointLights(device=device)
|
||||
self.materials = (
|
||||
@ -112,7 +112,7 @@ class SoftPhongShader(nn.Module):
|
||||
lights=None,
|
||||
materials=None,
|
||||
blend_params=None,
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lights = lights if lights is not None else PointLights(device=device)
|
||||
self.materials = (
|
||||
@ -178,7 +178,7 @@ class HardGouraudShader(nn.Module):
|
||||
lights=None,
|
||||
materials=None,
|
||||
blend_params=None,
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lights = lights if lights is not None else PointLights(device=device)
|
||||
self.materials = (
|
||||
@ -243,7 +243,7 @@ class SoftGouraudShader(nn.Module):
|
||||
lights=None,
|
||||
materials=None,
|
||||
blend_params=None,
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lights = lights if lights is not None else PointLights(device=device)
|
||||
self.materials = (
|
||||
@ -325,7 +325,7 @@ class HardFlatShader(nn.Module):
|
||||
lights=None,
|
||||
materials=None,
|
||||
blend_params=None,
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lights = lights if lights is not None else PointLights(device=device)
|
||||
self.materials = (
|
||||
@ -381,7 +381,7 @@ class SoftSilhouetteShader(nn.Module):
|
||||
3D Reasoning', ICCV 2019
|
||||
"""
|
||||
|
||||
def __init__(self, blend_params=None):
|
||||
def __init__(self, blend_params=None) -> None:
|
||||
super().__init__()
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
|
@ -262,7 +262,7 @@ class TexturesBase:
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def __getitem__(self, index):
|
||||
def __getitem__(self, index) -> "TexturesBase":
|
||||
"""
|
||||
Each texture class should implement a method
|
||||
to get the texture properties for the
|
||||
@ -321,7 +321,7 @@ def Textures(
|
||||
|
||||
|
||||
class TexturesAtlas(TexturesBase):
|
||||
def __init__(self, atlas: Union[torch.Tensor, List[torch.Tensor]]):
|
||||
def __init__(self, atlas: Union[torch.Tensor, List[torch.Tensor]]) -> None:
|
||||
"""
|
||||
A texture representation where each face has a square texture map.
|
||||
This is based on the implementation from SoftRasterizer [1].
|
||||
@ -420,7 +420,7 @@ class TexturesAtlas(TexturesBase):
|
||||
tex._num_faces_per_mesh = num_faces
|
||||
return tex
|
||||
|
||||
def __getitem__(self, index):
|
||||
def __getitem__(self, index) -> "TexturesAtlas":
|
||||
props = ["atlas_list", "_num_faces_per_mesh"]
|
||||
new_props = self._getitem(index, props=props)
|
||||
atlas = new_props["atlas_list"]
|
||||
@ -596,7 +596,7 @@ class TexturesUV(TexturesBase):
|
||||
verts_uvs: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]],
|
||||
padding_mode: str = "border",
|
||||
align_corners: bool = True,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Textures are represented as a per mesh texture map and uv coordinates for each
|
||||
vertex in each face. NOTE: this class only supports one texture map per mesh.
|
||||
@ -786,7 +786,7 @@ class TexturesUV(TexturesBase):
|
||||
tex.valid = self.valid.detach()
|
||||
return tex
|
||||
|
||||
def __getitem__(self, index):
|
||||
def __getitem__(self, index) -> "TexturesUV":
|
||||
props = ["verts_uvs_list", "faces_uvs_list", "maps_list", "_num_faces_per_mesh"]
|
||||
new_props = self._getitem(index, props)
|
||||
faces_uvs = new_props["faces_uvs_list"]
|
||||
@ -1257,7 +1257,7 @@ class TexturesVertex(TexturesBase):
|
||||
def __init__(
|
||||
self,
|
||||
verts_features: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor]],
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Batched texture representation where each vertex in a mesh
|
||||
has a C dimensional feature vector.
|
||||
|
@ -25,7 +25,7 @@ class AlphaCompositor(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self, background_color: Optional[Union[Tuple, List, torch.Tensor]] = None
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.background_color = background_color
|
||||
|
||||
@ -47,7 +47,7 @@ class NormWeightedCompositor(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self, background_color: Optional[Union[Tuple, List, torch.Tensor]] = None
|
||||
):
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.background_color = background_color
|
||||
|
||||
|
@ -326,7 +326,7 @@ class Renderer(torch.nn.Module):
|
||||
background_normalized_depth: float = _C.EPS,
|
||||
n_channels: int = 3,
|
||||
n_track: int = 5,
|
||||
):
|
||||
) -> None:
|
||||
super(Renderer, self).__init__()
|
||||
# pyre-fixme[16]: Module `pytorch3d` has no attribute `_C`.
|
||||
self._renderer = _C.PulsarRenderer(
|
||||
|
@ -51,7 +51,7 @@ class PulsarPointsRenderer(nn.Module):
|
||||
n_channels: int = 3,
|
||||
max_num_spheres: int = int(1e6), # noqa: B008
|
||||
**kwargs,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
rasterizer (PointsRasterizer): An object encapsulating rasterization parameters.
|
||||
compositor (ignored): Only keeping this for interface consistency. Default: None.
|
||||
|
@ -38,7 +38,7 @@ class PointsRasterizationSettings:
|
||||
points_per_pixel: int = 8,
|
||||
bin_size: Optional[int] = None,
|
||||
max_points_per_bin: Optional[int] = None,
|
||||
):
|
||||
) -> None:
|
||||
self.image_size = image_size
|
||||
self.radius = radius
|
||||
self.points_per_pixel = points_per_pixel
|
||||
@ -51,7 +51,7 @@ class PointsRasterizer(nn.Module):
|
||||
This class implements methods for rasterizing a batch of pointclouds.
|
||||
"""
|
||||
|
||||
def __init__(self, cameras=None, raster_settings=None):
|
||||
def __init__(self, cameras=None, raster_settings=None) -> None:
|
||||
"""
|
||||
cameras: A cameras object which has a `transform_points` method
|
||||
which returns the transformed points after applying the
|
||||
|
@ -32,7 +32,7 @@ class PointsRenderer(nn.Module):
|
||||
function.
|
||||
"""
|
||||
|
||||
def __init__(self, rasterizer, compositor):
|
||||
def __init__(self, rasterizer, compositor) -> None:
|
||||
super().__init__()
|
||||
self.rasterizer = rasterizer
|
||||
self.compositor = compositor
|
||||
|
@ -25,7 +25,7 @@ class TensorAccessor(nn.Module):
|
||||
and one element in the batch needs to be modified.
|
||||
"""
|
||||
|
||||
def __init__(self, class_object, index: Union[int, slice]):
|
||||
def __init__(self, class_object, index: Union[int, slice]) -> None:
|
||||
"""
|
||||
Args:
|
||||
class_object: this should be an instance of a class which has
|
||||
@ -96,7 +96,7 @@ class TensorProperties(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self, dtype: torch.dtype = torch.float32, device: Device = "cpu", **kwargs
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dtype: data type to set for the inputs
|
||||
@ -143,7 +143,7 @@ class TensorProperties(nn.Module):
|
||||
def isempty(self) -> bool:
|
||||
return self._N == 0
|
||||
|
||||
def __getitem__(self, index: Union[int, slice]):
|
||||
def __getitem__(self, index: Union[int, slice]) -> TensorAccessor:
|
||||
"""
|
||||
|
||||
Args:
|
||||
|
@ -219,7 +219,7 @@ class Meshes:
|
||||
textures=None,
|
||||
*,
|
||||
verts_normals=None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
verts:
|
||||
@ -469,10 +469,10 @@ class Meshes:
|
||||
else:
|
||||
raise ValueError("verts_normals must be a list or tensor")
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self._N
|
||||
|
||||
def __getitem__(self, index):
|
||||
def __getitem__(self, index) -> "Meshes":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the mesh to retrieve.
|
||||
@ -493,7 +493,7 @@ class Meshes:
|
||||
# NOTE consider converting index to cpu for efficiency
|
||||
if index.dtype == torch.bool:
|
||||
# advanced indexing on a single dimension
|
||||
index = index.nonzero()
|
||||
index = index.nonzero() # pyre-ignore
|
||||
index = index.squeeze(1) if index.numel() > 0 else index
|
||||
index = index.tolist()
|
||||
verts = [self.verts_list()[i] for i in index]
|
||||
|
@ -108,7 +108,7 @@ class Pointclouds:
|
||||
"equisized",
|
||||
]
|
||||
|
||||
def __init__(self, points, normals=None, features=None):
|
||||
def __init__(self, points, normals=None, features=None) -> None:
|
||||
"""
|
||||
Args:
|
||||
points:
|
||||
@ -306,10 +306,10 @@ class Pointclouds:
|
||||
points in a cloud."
|
||||
)
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self._N
|
||||
|
||||
def __getitem__(self, index):
|
||||
def __getitem__(self, index) -> "Pointclouds":
|
||||
"""
|
||||
Args:
|
||||
index: Specifying the index of the cloud to retrieve.
|
||||
@ -343,7 +343,7 @@ class Pointclouds:
|
||||
# NOTE consider converting index to cpu for efficiency
|
||||
if index.dtype == torch.bool:
|
||||
# advanced indexing on a single dimension
|
||||
index = index.nonzero()
|
||||
index = index.nonzero() # pyre-ignore
|
||||
index = index.squeeze(1) if index.numel() > 0 else index
|
||||
index = index.tolist()
|
||||
points = [self.points_list()[i] for i in index]
|
||||
|
@ -155,7 +155,7 @@ class Volumes:
|
||||
features: Optional[_TensorBatch] = None,
|
||||
voxel_size: _VoxelSize = 1.0,
|
||||
volume_translation: _Translation = (0.0, 0.0, 0.0),
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
**densities**: Batch of input feature volume occupancies of shape
|
||||
|
@ -144,7 +144,7 @@ class Transform3d:
|
||||
dtype: torch.dtype = torch.float32,
|
||||
device: Device = "cpu",
|
||||
matrix: Optional[torch.Tensor] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dtype: The data type of the transformation matrix.
|
||||
@ -176,7 +176,7 @@ class Transform3d:
|
||||
self.device = make_device(device)
|
||||
self.dtype = dtype
|
||||
|
||||
def __len__(self):
|
||||
def __len__(self) -> int:
|
||||
return self.get_matrix().shape[0]
|
||||
|
||||
def __getitem__(
|
||||
@ -462,7 +462,7 @@ class Translate(Transform3d):
|
||||
z=None,
|
||||
dtype: torch.dtype = torch.float32,
|
||||
device: Optional[Device] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Create a new Transform3d representing 3D translations.
|
||||
|
||||
@ -503,7 +503,7 @@ class Scale(Transform3d):
|
||||
z=None,
|
||||
dtype: torch.dtype = torch.float32,
|
||||
device: Optional[Device] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
A Transform3d representing a scaling operation, with different scale
|
||||
factors along each coordinate axis.
|
||||
@ -549,7 +549,7 @@ class Rotate(Transform3d):
|
||||
dtype: torch.dtype = torch.float32,
|
||||
device: Optional[Device] = None,
|
||||
orthogonal_tol: float = 1e-5,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Create a new Transform3d representing 3D rotation using a rotation
|
||||
matrix as the input.
|
||||
@ -589,7 +589,7 @@ class RotateAxisAngle(Rotate):
|
||||
degrees: bool = True,
|
||||
dtype: torch.dtype = torch.float64,
|
||||
device: Optional[Device] = None,
|
||||
):
|
||||
) -> None:
|
||||
"""
|
||||
Create a new Transform3d representing 3D rotation about an axis
|
||||
by an angle.
|
||||
|
Loading…
x
Reference in New Issue
Block a user