mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
Avoid plain division involving integers
Summary: To avoid pytorch warnings and future behaviour changes, stop using torch.div and / with tensors of integers. Reviewed By: gkioxari, mruberry Differential Revision: D21857955 fbshipit-source-id: fb9f3000f3d953352cdc721d2a5f73d3a4bbf4b7
This commit is contained in:
parent
40b068e4bc
commit
5444c53cee
@ -18,9 +18,9 @@ def unravel_index(idx, dims) -> torch.Tensor:
|
|||||||
if len(dims) != 4:
|
if len(dims) != 4:
|
||||||
raise ValueError("Expects a 4-element list.")
|
raise ValueError("Expects a 4-element list.")
|
||||||
N, H, W, D = dims
|
N, H, W, D = dims
|
||||||
n = torch.div(idx, H * W * D)
|
n = idx // (H * W * D)
|
||||||
h = torch.div(idx - n * H * W * D, W * D)
|
h = (idx - n * H * W * D) // (W * D)
|
||||||
w = torch.div(idx - n * H * W * D - h * W * D, D)
|
w = (idx - n * H * W * D - h * W * D) // D
|
||||||
d = idx - n * H * W * D - h * W * D - w * D
|
d = idx - n * H * W * D - h * W * D - w * D
|
||||||
return torch.stack((n, h, w, d), dim=1)
|
return torch.stack((n, h, w, d), dim=1)
|
||||||
|
|
||||||
|
@ -1031,7 +1031,7 @@ class Meshes(object):
|
|||||||
unique_mask[1:] = sorted_hash[1:] != sorted_hash[:-1]
|
unique_mask[1:] = sorted_hash[1:] != sorted_hash[:-1]
|
||||||
unique_idx = sort_idx[unique_mask]
|
unique_idx = sort_idx[unique_mask]
|
||||||
|
|
||||||
self._edges_packed = torch.stack([u / V, u % V], dim=1)
|
self._edges_packed = torch.stack([u // V, u % V], dim=1)
|
||||||
self._edges_packed_to_mesh_idx = edge_to_mesh[unique_idx]
|
self._edges_packed_to_mesh_idx = edge_to_mesh[unique_idx]
|
||||||
|
|
||||||
face_to_edge = torch.arange(3 * F).view(3, F).t()
|
face_to_edge = torch.arange(3 * F).view(3, F).t()
|
||||||
|
@ -24,11 +24,8 @@ DEBUG = False # Set DEBUG to true to save outputs from the tests.
|
|||||||
def convert_image_to_binary_mask(filename):
|
def convert_image_to_binary_mask(filename):
|
||||||
with Image.open(filename) as raw_image:
|
with Image.open(filename) as raw_image:
|
||||||
image = torch.from_numpy(np.array(raw_image))
|
image = torch.from_numpy(np.array(raw_image))
|
||||||
min = image.min()
|
mx = image.max()
|
||||||
max = image.max()
|
image_norm = (image == mx).to(torch.int64)
|
||||||
image_norm = (image - min) / (max - min)
|
|
||||||
image_norm[image_norm > 0] == 1.0
|
|
||||||
image_norm = image_norm.to(torch.int64)
|
|
||||||
return image_norm
|
return image_norm
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user