mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	Avoid plain division involving integers
Summary: To avoid pytorch warnings and future behaviour changes, stop using torch.div and / with tensors of integers. Reviewed By: gkioxari, mruberry Differential Revision: D21857955 fbshipit-source-id: fb9f3000f3d953352cdc721d2a5f73d3a4bbf4b7
This commit is contained in:
		
							parent
							
								
									40b068e4bc
								
							
						
					
					
						commit
						5444c53cee
					
				@ -18,9 +18,9 @@ def unravel_index(idx, dims) -> torch.Tensor:
 | 
			
		||||
    if len(dims) != 4:
 | 
			
		||||
        raise ValueError("Expects a 4-element list.")
 | 
			
		||||
    N, H, W, D = dims
 | 
			
		||||
    n = torch.div(idx, H * W * D)
 | 
			
		||||
    h = torch.div(idx - n * H * W * D, W * D)
 | 
			
		||||
    w = torch.div(idx - n * H * W * D - h * W * D, D)
 | 
			
		||||
    n = idx // (H * W * D)
 | 
			
		||||
    h = (idx - n * H * W * D) // (W * D)
 | 
			
		||||
    w = (idx - n * H * W * D - h * W * D) // D
 | 
			
		||||
    d = idx - n * H * W * D - h * W * D - w * D
 | 
			
		||||
    return torch.stack((n, h, w, d), dim=1)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -1031,7 +1031,7 @@ class Meshes(object):
 | 
			
		||||
        unique_mask[1:] = sorted_hash[1:] != sorted_hash[:-1]
 | 
			
		||||
        unique_idx = sort_idx[unique_mask]
 | 
			
		||||
 | 
			
		||||
        self._edges_packed = torch.stack([u / V, u % V], dim=1)
 | 
			
		||||
        self._edges_packed = torch.stack([u // V, u % V], dim=1)
 | 
			
		||||
        self._edges_packed_to_mesh_idx = edge_to_mesh[unique_idx]
 | 
			
		||||
 | 
			
		||||
        face_to_edge = torch.arange(3 * F).view(3, F).t()
 | 
			
		||||
 | 
			
		||||
@ -24,11 +24,8 @@ DEBUG = False  # Set DEBUG to true to save outputs from the tests.
 | 
			
		||||
def convert_image_to_binary_mask(filename):
 | 
			
		||||
    with Image.open(filename) as raw_image:
 | 
			
		||||
        image = torch.from_numpy(np.array(raw_image))
 | 
			
		||||
    min = image.min()
 | 
			
		||||
    max = image.max()
 | 
			
		||||
    image_norm = (image - min) / (max - min)
 | 
			
		||||
    image_norm[image_norm > 0] == 1.0
 | 
			
		||||
    image_norm = image_norm.to(torch.int64)
 | 
			
		||||
    mx = image.max()
 | 
			
		||||
    image_norm = (image == mx).to(torch.int64)
 | 
			
		||||
    return image_norm
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user