mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 03:42:50 +08:00
Update Harmonic embedding in NeRF
Summary: Removed harmonic embedding function from projects/nerf and changed import to be from core pytorch3d. Reviewed By: patricklabatut Differential Revision: D33142358 fbshipit-source-id: 3004247d50392dbd04ea72e9cd4bace0dc03606b
This commit is contained in:
parent
f9a26a22fc
commit
52c71b8816
@ -1,88 +0,0 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the BSD-style license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
class HarmonicEmbedding(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
n_harmonic_functions: int = 6,
|
||||
omega0: float = 1.0,
|
||||
logspace: bool = True,
|
||||
include_input: bool = True,
|
||||
) -> None:
|
||||
"""
|
||||
Given an input tensor `x` of shape [minibatch, ... , dim],
|
||||
the harmonic embedding layer converts each feature
|
||||
in `x` into a series of harmonic features `embedding`,
|
||||
where for each i in range(dim) the following are present
|
||||
in embedding[...]:
|
||||
```
|
||||
[
|
||||
sin(x[..., i]),
|
||||
sin(f_1*x[..., i]),
|
||||
sin(f_2*x[..., i]),
|
||||
...
|
||||
sin(f_N * x[..., i]),
|
||||
cos(x[..., i]),
|
||||
cos(f_1*x[..., i]),
|
||||
cos(f_2*x[..., i]),
|
||||
...
|
||||
cos(f_N * x[..., i]),
|
||||
x[..., i] # only present if include_input is True.
|
||||
]
|
||||
```
|
||||
where N corresponds to `n_harmonic_functions`, and f_i is a scalar
|
||||
denoting the i-th frequency of the harmonic embedding.
|
||||
The shape of the output is [minibatch, ... , dim * (2 * N + 1)] if
|
||||
include_input is True, otherwise [minibatch, ... , dim * (2 * N)].
|
||||
|
||||
If `logspace==True`, the frequencies `[f_1, ..., f_N]` are
|
||||
powers of 2:
|
||||
`f_1 = 1, ..., f_N = 2**torch.arange(n_harmonic_functions)`
|
||||
|
||||
If `logspace==False`, frequencies are linearly spaced between
|
||||
`1.0` and `2**(n_harmonic_functions-1)`:
|
||||
`f_1, ..., f_N = torch.linspace(
|
||||
1.0, 2**(n_harmonic_functions-1), n_harmonic_functions
|
||||
)`
|
||||
|
||||
Note that `x` is also premultiplied by the base frequency `omega0`
|
||||
before evaluating the harmonic functions.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
if logspace:
|
||||
frequencies = 2.0 ** torch.arange(
|
||||
n_harmonic_functions,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
else:
|
||||
frequencies = torch.linspace(
|
||||
1.0,
|
||||
2.0 ** (n_harmonic_functions - 1),
|
||||
n_harmonic_functions,
|
||||
dtype=torch.float32,
|
||||
)
|
||||
|
||||
self.register_buffer("_frequencies", omega0 * frequencies, persistent=False)
|
||||
self.include_input = include_input
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
x: tensor of shape [..., dim]
|
||||
Returns:
|
||||
embedding: a harmonic embedding of `x` of shape
|
||||
[..., dim * (n_harmonic_functions * 2 + T)] where
|
||||
T is 1 if include_input is True and 0 otherwise.
|
||||
"""
|
||||
embed = (x[..., None] * self._frequencies).view(*x.shape[:-1], -1)
|
||||
if self.include_input:
|
||||
return torch.cat((embed.sin(), embed.cos(), x), dim=-1)
|
||||
else:
|
||||
return torch.cat((embed.sin(), embed.cos()), dim=-1)
|
@ -7,9 +7,8 @@
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
from pytorch3d.renderer import RayBundle, ray_bundle_to_ray_points
|
||||
from pytorch3d.renderer import RayBundle, ray_bundle_to_ray_points, HarmonicEmbedding
|
||||
|
||||
from .harmonic_embedding import HarmonicEmbedding
|
||||
from .linear_with_repeat import LinearWithRepeat
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user