mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 06:10:34 +08:00
Adapt RayPointRefiner and RayMarcher to support bins.
Summary:
## Context
Bins are used in mipnerf to allow to manipulate easily intervals. For example, by doing the following, `bins[..., :-1]` you will obtain all the left coordinates of your intervals, while doing `bins[..., 1:]` is equals to the right coordinates of your intervals.
We introduce here the support of bins like in MipNerf implementation.
## RayPointRefiner
Small changes have been made to modify RayPointRefiner.
- If bins is None
```
mids = torch.lerp(ray_bundle.lengths[..., 1:], ray_bundle.lengths[…, :-1], 0.5)
z_samples = sample_pdf(
mids, # [..., npt]
weights[..., 1:-1], # [..., npt - 1]
….
)
```
- If bins is not None
In the MipNerf implementation the sampling is done on all the bins. It allows us to use the full weights tensor without slashing it.
```
z_samples = sample_pdf(
ray_bundle.bins, # [..., npt + 1]
weights, # [..., npt]
...
)
```
## RayMarcher
Add a ray_deltas optional argument. If None, keep the same deltas computation from ray_lengths.
Reviewed By: shapovalov
Differential Revision: D46389092
fbshipit-source-id: d4f1963310065bd31c1c7fac1adfe11cbeaba606
This commit is contained in:
committed by
Facebook GitHub Bot
parent
5910d81b7b
commit
3d011a9198
@@ -70,6 +70,71 @@ class TestRayPointRefiner(TestCaseMixin, unittest.TestCase):
|
||||
(lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
|
||||
)
|
||||
|
||||
def test_simple_use_bins(self):
|
||||
"""
|
||||
Same spirit than test_simple but use bins in the ImplicitronRayBunle.
|
||||
It has been duplicated to avoid cognitive overload while reading the
|
||||
test (lot of if else).
|
||||
"""
|
||||
length = 15
|
||||
n_pts_per_ray = 10
|
||||
|
||||
for add_input_samples, use_blurpool in product([False, True], [False, True]):
|
||||
ray_point_refiner = RayPointRefiner(
|
||||
n_pts_per_ray=n_pts_per_ray,
|
||||
random_sampling=False,
|
||||
add_input_samples=add_input_samples,
|
||||
)
|
||||
|
||||
bundle = ImplicitronRayBundle(
|
||||
lengths=None,
|
||||
bins=torch.arange(length + 1, dtype=torch.float32).expand(
|
||||
3, 25, length + 1
|
||||
),
|
||||
origins=None,
|
||||
directions=None,
|
||||
xys=None,
|
||||
camera_ids=None,
|
||||
camera_counts=None,
|
||||
)
|
||||
weights = torch.ones(3, 25, length)
|
||||
refined = ray_point_refiner(bundle, weights, blurpool_weights=use_blurpool)
|
||||
|
||||
self.assertIsNone(refined.directions)
|
||||
self.assertIsNone(refined.origins)
|
||||
self.assertIsNone(refined.xys)
|
||||
expected_bins = torch.linspace(0, length, n_pts_per_ray + 1)
|
||||
expected_bins = expected_bins.expand(3, 25, n_pts_per_ray + 1)
|
||||
if add_input_samples:
|
||||
expected_bins = torch.cat((bundle.bins, expected_bins), dim=-1).sort()[
|
||||
0
|
||||
]
|
||||
full_expected = torch.lerp(
|
||||
expected_bins[..., :-1], expected_bins[..., 1:], 0.5
|
||||
)
|
||||
|
||||
self.assertClose(refined.lengths, full_expected)
|
||||
|
||||
ray_point_refiner_random = RayPointRefiner(
|
||||
n_pts_per_ray=n_pts_per_ray,
|
||||
random_sampling=True,
|
||||
add_input_samples=add_input_samples,
|
||||
)
|
||||
|
||||
refined_random = ray_point_refiner_random(
|
||||
bundle, weights, blurpool_weights=use_blurpool
|
||||
)
|
||||
lengths_random = refined_random.lengths
|
||||
self.assertEqual(lengths_random.shape, full_expected.shape)
|
||||
if not add_input_samples:
|
||||
self.assertGreater(lengths_random.min().item(), 0)
|
||||
self.assertLess(lengths_random.max().item(), length)
|
||||
|
||||
# Check sorted
|
||||
self.assertTrue(
|
||||
(lengths_random[..., 1:] - lengths_random[..., :-1] > 0).all()
|
||||
)
|
||||
|
||||
def test_apply_blurpool_on_weights(self):
|
||||
weights = torch.tensor(
|
||||
[
|
||||
|
||||
Reference in New Issue
Block a user