upgrade pyre version in fbcode/vision - batch 2

Reviewed By: bottler

Differential Revision: D60992234

fbshipit-source-id: 899db6ed590ef966ff651c11027819e59b8401a3
This commit is contained in:
generatedunixname89002005307016 2024-08-09 02:07:45 -07:00 committed by Facebook GitHub Bot
parent 1e0b1d9c72
commit 38afdcfc68
26 changed files with 87 additions and 27 deletions

View File

@ -99,7 +99,7 @@ except ModuleNotFoundError:
no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None no_accelerate = os.environ.get("PYTORCH3D_NO_ACCELERATE") is not None
class Experiment(Configurable): # pyre-ignore: 13 class Experiment(Configurable):
""" """
This class is at the top level of Implicitron's config hierarchy. Its This class is at the top level of Implicitron's config hierarchy. Its
members are high-level components necessary for training an implicit rende- members are high-level components necessary for training an implicit rende-
@ -120,12 +120,16 @@ class Experiment(Configurable): # pyre-ignore: 13
will be saved here. will be saved here.
""" """
# pyre-fixme[13]: Attribute `data_source` is never initialized.
data_source: DataSourceBase data_source: DataSourceBase
data_source_class_type: str = "ImplicitronDataSource" data_source_class_type: str = "ImplicitronDataSource"
# pyre-fixme[13]: Attribute `model_factory` is never initialized.
model_factory: ModelFactoryBase model_factory: ModelFactoryBase
model_factory_class_type: str = "ImplicitronModelFactory" model_factory_class_type: str = "ImplicitronModelFactory"
# pyre-fixme[13]: Attribute `optimizer_factory` is never initialized.
optimizer_factory: OptimizerFactoryBase optimizer_factory: OptimizerFactoryBase
optimizer_factory_class_type: str = "ImplicitronOptimizerFactory" optimizer_factory_class_type: str = "ImplicitronOptimizerFactory"
# pyre-fixme[13]: Attribute `training_loop` is never initialized.
training_loop: TrainingLoopBase training_loop: TrainingLoopBase
training_loop_class_type: str = "ImplicitronTrainingLoop" training_loop_class_type: str = "ImplicitronTrainingLoop"

View File

@ -45,7 +45,7 @@ class ModelFactoryBase(ReplaceableBase):
@registry.register @registry.register
class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13] class ImplicitronModelFactory(ModelFactoryBase):
""" """
A factory class that initializes an implicit rendering model. A factory class that initializes an implicit rendering model.
@ -61,6 +61,7 @@ class ImplicitronModelFactory(ModelFactoryBase): # pyre-ignore [13]
""" """
# pyre-fixme[13]: Attribute `model` is never initialized.
model: ImplicitronModelBase model: ImplicitronModelBase
model_class_type: str = "GenericModel" model_class_type: str = "GenericModel"
resume: bool = True resume: bool = True

View File

@ -30,13 +30,13 @@ from .utils import seed_all_random_engines
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
class TrainingLoopBase(ReplaceableBase): class TrainingLoopBase(ReplaceableBase):
""" """
Members: Members:
evaluator: An EvaluatorBase instance, used to evaluate training results. evaluator: An EvaluatorBase instance, used to evaluate training results.
""" """
# pyre-fixme[13]: Attribute `evaluator` is never initialized.
evaluator: Optional[EvaluatorBase] evaluator: Optional[EvaluatorBase]
evaluator_class_type: Optional[str] = "ImplicitronEvaluator" evaluator_class_type: Optional[str] = "ImplicitronEvaluator"

View File

@ -41,7 +41,7 @@ class DataSourceBase(ReplaceableBase):
@registry.register @registry.register
class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13] class ImplicitronDataSource(DataSourceBase):
""" """
Represents the data used in Implicitron. This is the only implementation Represents the data used in Implicitron. This is the only implementation
of DataSourceBase provided. of DataSourceBase provided.
@ -52,8 +52,11 @@ class ImplicitronDataSource(DataSourceBase): # pyre-ignore[13]
data_loader_map_provider_class_type: identifies type for data_loader_map_provider. data_loader_map_provider_class_type: identifies type for data_loader_map_provider.
""" """
# pyre-fixme[13]: Attribute `dataset_map_provider` is never initialized.
dataset_map_provider: DatasetMapProviderBase dataset_map_provider: DatasetMapProviderBase
# pyre-fixme[13]: Attribute `dataset_map_provider_class_type` is never initialized.
dataset_map_provider_class_type: str dataset_map_provider_class_type: str
# pyre-fixme[13]: Attribute `data_loader_map_provider` is never initialized.
data_loader_map_provider: DataLoaderMapProviderBase data_loader_map_provider: DataLoaderMapProviderBase
data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider" data_loader_map_provider_class_type: str = "SequenceDataLoaderMapProvider"

View File

@ -66,7 +66,7 @@ _NEED_CONTROL: Tuple[str, ...] = (
@registry.register @registry.register
class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13] class JsonIndexDatasetMapProvider(DatasetMapProviderBase):
""" """
Generates the training / validation and testing dataset objects for Generates the training / validation and testing dataset objects for
a dataset laid out on disk like Co3D, with annotations in json files. a dataset laid out on disk like Co3D, with annotations in json files.
@ -95,6 +95,7 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
path_manager_factory_class_type: The class type of `path_manager_factory`. path_manager_factory_class_type: The class type of `path_manager_factory`.
""" """
# pyre-fixme[13]: Attribute `category` is never initialized.
category: str category: str
task_str: str = "singlesequence" task_str: str = "singlesequence"
dataset_root: str = _CO3D_DATASET_ROOT dataset_root: str = _CO3D_DATASET_ROOT
@ -104,8 +105,10 @@ class JsonIndexDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13]
test_restrict_sequence_id: int = -1 test_restrict_sequence_id: int = -1
assert_single_seq: bool = False assert_single_seq: bool = False
only_test_set: bool = False only_test_set: bool = False
# pyre-fixme[13]: Attribute `dataset` is never initialized.
dataset: JsonIndexDataset dataset: JsonIndexDataset
dataset_class_type: str = "JsonIndexDataset" dataset_class_type: str = "JsonIndexDataset"
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory" path_manager_factory_class_type: str = "PathManagerFactory"

View File

@ -56,7 +56,7 @@ logger = logging.getLogger(__name__)
@registry.register @registry.register
class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13] class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase):
""" """
Generates the training, validation, and testing dataset objects for Generates the training, validation, and testing dataset objects for
a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files. a dataset laid out on disk like CO3Dv2, with annotations in gzipped json files.
@ -171,7 +171,9 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
path_manager_factory_class_type: The class type of `path_manager_factory`. path_manager_factory_class_type: The class type of `path_manager_factory`.
""" """
# pyre-fixme[13]: Attribute `category` is never initialized.
category: str category: str
# pyre-fixme[13]: Attribute `subset_name` is never initialized.
subset_name: str subset_name: str
dataset_root: str = _CO3DV2_DATASET_ROOT dataset_root: str = _CO3DV2_DATASET_ROOT
@ -183,8 +185,10 @@ class JsonIndexDatasetMapProviderV2(DatasetMapProviderBase): # pyre-ignore [13]
n_known_frames_for_test: int = 0 n_known_frames_for_test: int = 0
dataset_class_type: str = "JsonIndexDataset" dataset_class_type: str = "JsonIndexDataset"
# pyre-fixme[13]: Attribute `dataset` is never initialized.
dataset: JsonIndexDataset dataset: JsonIndexDataset
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory" path_manager_factory_class_type: str = "PathManagerFactory"

View File

@ -32,7 +32,7 @@ from .utils import DATASET_TYPE_KNOWN
@registry.register @registry.register
class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13] class RenderedMeshDatasetMapProvider(DatasetMapProviderBase):
""" """
A simple single-scene dataset based on PyTorch3D renders of a mesh. A simple single-scene dataset based on PyTorch3D renders of a mesh.
Provides `num_views` renders of the mesh as train, with no val Provides `num_views` renders of the mesh as train, with no val
@ -76,6 +76,7 @@ class RenderedMeshDatasetMapProvider(DatasetMapProviderBase): # pyre-ignore [13
resolution: int = 128 resolution: int = 128
use_point_light: bool = True use_point_light: bool = True
gpu_idx: Optional[int] = 0 gpu_idx: Optional[int] = 0
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory" path_manager_factory_class_type: str = "PathManagerFactory"

View File

@ -83,7 +83,6 @@ class SingleSceneDataset(DatasetBase, Configurable):
return self.eval_batches return self.eval_batches
# pyre-fixme[13]: Uninitialized attribute
class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase): class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
""" """
Base for provider of data for one scene from LLFF or blender datasets. Base for provider of data for one scene from LLFF or blender datasets.
@ -100,8 +99,11 @@ class SingleSceneDatasetMapProviderBase(DatasetMapProviderBase):
testing frame. testing frame.
""" """
# pyre-fixme[13]: Attribute `base_dir` is never initialized.
base_dir: str base_dir: str
# pyre-fixme[13]: Attribute `object_name` is never initialized.
object_name: str object_name: str
# pyre-fixme[13]: Attribute `path_manager_factory` is never initialized.
path_manager_factory: PathManagerFactory path_manager_factory: PathManagerFactory
path_manager_factory_class_type: str = "PathManagerFactory" path_manager_factory_class_type: str = "PathManagerFactory"
n_known_frames_for_test: Optional[int] = None n_known_frames_for_test: Optional[int] = None

View File

@ -348,6 +348,7 @@ def adjust_camera_to_image_scale_(
camera: PerspectiveCameras, camera: PerspectiveCameras,
original_size_wh: torch.Tensor, original_size_wh: torch.Tensor,
new_size_wh: torch.LongTensor, new_size_wh: torch.LongTensor,
# pyre-fixme[7]: Expected `PerspectiveCameras` but got implicit return value of `None`.
) -> PerspectiveCameras: ) -> PerspectiveCameras:
focal_length_px, principal_point_px = _convert_ndc_to_pixels( focal_length_px, principal_point_px = _convert_ndc_to_pixels(
camera.focal_length[0], camera.focal_length[0],
@ -367,7 +368,7 @@ def adjust_camera_to_image_scale_(
image_size_wh_output, image_size_wh_output,
) )
camera.focal_length = focal_length_scaled[None] camera.focal_length = focal_length_scaled[None]
camera.principal_point = principal_point_scaled[None] # pyre-ignore camera.principal_point = principal_point_scaled[None]
# NOTE this cache is per-worker; they are implemented as processes. # NOTE this cache is per-worker; they are implemented as processes.

View File

@ -65,7 +65,7 @@ logger = logging.getLogger(__name__)
@registry.register @registry.register
class GenericModel(ImplicitronModelBase): # pyre-ignore: 13 class GenericModel(ImplicitronModelBase):
""" """
GenericModel is a wrapper for the neural implicit GenericModel is a wrapper for the neural implicit
rendering and reconstruction pipeline which consists rendering and reconstruction pipeline which consists
@ -226,34 +226,42 @@ class GenericModel(ImplicitronModelBase): # pyre-ignore: 13
# ---- global encoder settings # ---- global encoder settings
global_encoder_class_type: Optional[str] = None global_encoder_class_type: Optional[str] = None
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
global_encoder: Optional[GlobalEncoderBase] global_encoder: Optional[GlobalEncoderBase]
# ---- raysampler # ---- raysampler
raysampler_class_type: str = "AdaptiveRaySampler" raysampler_class_type: str = "AdaptiveRaySampler"
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
raysampler: RaySamplerBase raysampler: RaySamplerBase
# ---- renderer configs # ---- renderer configs
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer" renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
# pyre-fixme[13]: Attribute `renderer` is never initialized.
renderer: BaseRenderer renderer: BaseRenderer
# ---- image feature extractor settings # ---- image feature extractor settings
# (This is only created if view_pooler is enabled) # (This is only created if view_pooler is enabled)
# pyre-fixme[13]: Attribute `image_feature_extractor` is never initialized.
image_feature_extractor: Optional[FeatureExtractorBase] image_feature_extractor: Optional[FeatureExtractorBase]
image_feature_extractor_class_type: Optional[str] = None image_feature_extractor_class_type: Optional[str] = None
# ---- view pooler settings # ---- view pooler settings
view_pooler_enabled: bool = False view_pooler_enabled: bool = False
# pyre-fixme[13]: Attribute `view_pooler` is never initialized.
view_pooler: Optional[ViewPooler] view_pooler: Optional[ViewPooler]
# ---- implicit function settings # ---- implicit function settings
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction" implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
# This is just a model, never constructed. # This is just a model, never constructed.
# The actual implicit functions live in self._implicit_functions # The actual implicit functions live in self._implicit_functions
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
implicit_function: ImplicitFunctionBase implicit_function: ImplicitFunctionBase
# ----- metrics # ----- metrics
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
view_metrics: ViewMetricsBase view_metrics: ViewMetricsBase
view_metrics_class_type: str = "ViewMetrics" view_metrics_class_type: str = "ViewMetrics"
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
regularization_metrics: RegularizationMetricsBase regularization_metrics: RegularizationMetricsBase
regularization_metrics_class_type: str = "RegularizationMetrics" regularization_metrics_class_type: str = "RegularizationMetrics"

View File

@ -59,12 +59,13 @@ class GlobalEncoderBase(ReplaceableBase):
# TODO: probabilistic embeddings? # TODO: probabilistic embeddings?
@registry.register @registry.register
class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module): # pyre-ignore: 13 class SequenceAutodecoder(GlobalEncoderBase, torch.nn.Module):
""" """
A global encoder implementation which provides an autodecoder encoding A global encoder implementation which provides an autodecoder encoding
of the frame's sequence identifier. of the frame's sequence identifier.
""" """
# pyre-fixme[13]: Attribute `autodecoder` is never initialized.
autodecoder: Autodecoder autodecoder: Autodecoder
def __post_init__(self): def __post_init__(self):

View File

@ -244,7 +244,6 @@ class MLPWithInputSkips(Configurable, torch.nn.Module):
@registry.register @registry.register
# pyre-fixme[13]: Attribute `network` is never initialized.
class MLPDecoder(DecoderFunctionBase): class MLPDecoder(DecoderFunctionBase):
""" """
Decoding function which uses `MLPWithIputSkips` to convert the embedding to output. Decoding function which uses `MLPWithIputSkips` to convert the embedding to output.
@ -272,6 +271,7 @@ class MLPDecoder(DecoderFunctionBase):
input_dim: int = 3 input_dim: int = 3
param_groups: Dict[str, str] = field(default_factory=lambda: {}) param_groups: Dict[str, str] = field(default_factory=lambda: {})
# pyre-fixme[13]: Attribute `network` is never initialized.
network: MLPWithInputSkips network: MLPWithInputSkips
def __post_init__(self): def __post_init__(self):

View File

@ -318,10 +318,11 @@ class SRNRaymarchHyperNet(Configurable, torch.nn.Module):
@registry.register @registry.register
# pyre-fixme[13]: Uninitialized attribute
class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module): class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
latent_dim: int = 0 latent_dim: int = 0
# pyre-fixme[13]: Attribute `raymarch_function` is never initialized.
raymarch_function: SRNRaymarchFunction raymarch_function: SRNRaymarchFunction
# pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
pixel_generator: SRNPixelGenerator pixel_generator: SRNPixelGenerator
def __post_init__(self): def __post_init__(self):
@ -366,7 +367,6 @@ class SRNImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
@registry.register @registry.register
# pyre-fixme[13]: Uninitialized attribute
class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module): class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
""" """
This implicit function uses a hypernetwork to generate the This implicit function uses a hypernetwork to generate the
@ -377,7 +377,9 @@ class SRNHyperNetImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
latent_dim_hypernet: int = 0 latent_dim_hypernet: int = 0
latent_dim: int = 0 latent_dim: int = 0
# pyre-fixme[13]: Attribute `hypernet` is never initialized.
hypernet: SRNRaymarchHyperNet hypernet: SRNRaymarchHyperNet
# pyre-fixme[13]: Attribute `pixel_generator` is never initialized.
pixel_generator: SRNPixelGenerator pixel_generator: SRNPixelGenerator
def __post_init__(self): def __post_init__(self):

View File

@ -805,7 +805,6 @@ class VMFactorizedVoxelGrid(VoxelGridBase):
) )
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
class VoxelGridModule(Configurable, torch.nn.Module): class VoxelGridModule(Configurable, torch.nn.Module):
""" """
A wrapper torch.nn.Module for the VoxelGrid classes, which A wrapper torch.nn.Module for the VoxelGrid classes, which
@ -845,6 +844,7 @@ class VoxelGridModule(Configurable, torch.nn.Module):
""" """
voxel_grid_class_type: str = "FullResolutionVoxelGrid" voxel_grid_class_type: str = "FullResolutionVoxelGrid"
# pyre-fixme[13]: Attribute `voxel_grid` is never initialized.
voxel_grid: VoxelGridBase voxel_grid: VoxelGridBase
extents: Tuple[float, float, float] = (2.0, 2.0, 2.0) extents: Tuple[float, float, float] = (2.0, 2.0, 2.0)

View File

@ -39,7 +39,6 @@ enable_get_default_args(HarmonicEmbedding)
@registry.register @registry.register
# pyre-ignore[13]
class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module): class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
""" """
This implicit function consists of two streams, one for the density calculation and one This implicit function consists of two streams, one for the density calculation and one
@ -145,9 +144,11 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
""" """
# ---- voxel grid for density # ---- voxel grid for density
# pyre-fixme[13]: Attribute `voxel_grid_density` is never initialized.
voxel_grid_density: VoxelGridModule voxel_grid_density: VoxelGridModule
# ---- voxel grid for color # ---- voxel grid for color
# pyre-fixme[13]: Attribute `voxel_grid_color` is never initialized.
voxel_grid_color: VoxelGridModule voxel_grid_color: VoxelGridModule
# ---- harmonic embeddings density # ---- harmonic embeddings density
@ -163,10 +164,12 @@ class VoxelGridImplicitFunction(ImplicitFunctionBase, torch.nn.Module):
# ---- decoder function for density # ---- decoder function for density
decoder_density_class_type: str = "MLPDecoder" decoder_density_class_type: str = "MLPDecoder"
# pyre-fixme[13]: Attribute `decoder_density` is never initialized.
decoder_density: DecoderFunctionBase decoder_density: DecoderFunctionBase
# ---- decoder function for color # ---- decoder function for color
decoder_color_class_type: str = "MLPDecoder" decoder_color_class_type: str = "MLPDecoder"
# pyre-fixme[13]: Attribute `decoder_color` is never initialized.
decoder_color: DecoderFunctionBase decoder_color: DecoderFunctionBase
# ---- cuda streams # ---- cuda streams

View File

@ -69,7 +69,7 @@ IMPLICIT_FUNCTION_ARGS_TO_REMOVE: List[str] = [
@registry.register @registry.register
class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13 class OverfitModel(ImplicitronModelBase):
""" """
OverfitModel is a wrapper for the neural implicit OverfitModel is a wrapper for the neural implicit
rendering and reconstruction pipeline which consists rendering and reconstruction pipeline which consists
@ -198,27 +198,34 @@ class OverfitModel(ImplicitronModelBase): # pyre-ignore: 13
# ---- global encoder settings # ---- global encoder settings
global_encoder_class_type: Optional[str] = None global_encoder_class_type: Optional[str] = None
# pyre-fixme[13]: Attribute `global_encoder` is never initialized.
global_encoder: Optional[GlobalEncoderBase] global_encoder: Optional[GlobalEncoderBase]
# ---- raysampler # ---- raysampler
raysampler_class_type: str = "AdaptiveRaySampler" raysampler_class_type: str = "AdaptiveRaySampler"
# pyre-fixme[13]: Attribute `raysampler` is never initialized.
raysampler: RaySamplerBase raysampler: RaySamplerBase
# ---- renderer configs # ---- renderer configs
renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer" renderer_class_type: str = "MultiPassEmissionAbsorptionRenderer"
# pyre-fixme[13]: Attribute `renderer` is never initialized.
renderer: BaseRenderer renderer: BaseRenderer
# ---- implicit function settings # ---- implicit function settings
share_implicit_function_across_passes: bool = False share_implicit_function_across_passes: bool = False
implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction" implicit_function_class_type: str = "NeuralRadianceFieldImplicitFunction"
# pyre-fixme[13]: Attribute `implicit_function` is never initialized.
implicit_function: ImplicitFunctionBase implicit_function: ImplicitFunctionBase
coarse_implicit_function_class_type: Optional[str] = None coarse_implicit_function_class_type: Optional[str] = None
# pyre-fixme[13]: Attribute `coarse_implicit_function` is never initialized.
coarse_implicit_function: Optional[ImplicitFunctionBase] coarse_implicit_function: Optional[ImplicitFunctionBase]
# ----- metrics # ----- metrics
# pyre-fixme[13]: Attribute `view_metrics` is never initialized.
view_metrics: ViewMetricsBase view_metrics: ViewMetricsBase
view_metrics_class_type: str = "ViewMetrics" view_metrics_class_type: str = "ViewMetrics"
# pyre-fixme[13]: Attribute `regularization_metrics` is never initialized.
regularization_metrics: RegularizationMetricsBase regularization_metrics: RegularizationMetricsBase
regularization_metrics_class_type: str = "RegularizationMetrics" regularization_metrics_class_type: str = "RegularizationMetrics"

View File

@ -18,9 +18,7 @@ from .raymarcher import RaymarcherBase
@registry.register @registry.register
class MultiPassEmissionAbsorptionRenderer( # pyre-ignore: 13 class MultiPassEmissionAbsorptionRenderer(BaseRenderer, torch.nn.Module):
BaseRenderer, torch.nn.Module
):
""" """
Implements the multi-pass rendering function, in particular, Implements the multi-pass rendering function, in particular,
with emission-absorption ray marching used in NeRF [1]. First, it evaluates with emission-absorption ray marching used in NeRF [1]. First, it evaluates
@ -86,6 +84,7 @@ class MultiPassEmissionAbsorptionRenderer( # pyre-ignore: 13
""" """
raymarcher_class_type: str = "EmissionAbsorptionRaymarcher" raymarcher_class_type: str = "EmissionAbsorptionRaymarcher"
# pyre-fixme[13]: Attribute `raymarcher` is never initialized.
raymarcher: RaymarcherBase raymarcher: RaymarcherBase
n_pts_per_ray_fine_training: int = 64 n_pts_per_ray_fine_training: int = 64

View File

@ -16,8 +16,6 @@ from pytorch3d.renderer.implicit.sample_pdf import sample_pdf
@expand_args_fields @expand_args_fields
# pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
# pyre-fixme[13]: Attribute `random_sampling` is never initialized.
class RayPointRefiner(Configurable, torch.nn.Module): class RayPointRefiner(Configurable, torch.nn.Module):
""" """
Implements the importance sampling of points along rays. Implements the importance sampling of points along rays.
@ -45,7 +43,9 @@ class RayPointRefiner(Configurable, torch.nn.Module):
for Anti-Aliasing Neural Radiance Fields." ICCV 2021. for Anti-Aliasing Neural Radiance Fields." ICCV 2021.
""" """
# pyre-fixme[13]: Attribute `n_pts_per_ray` is never initialized.
n_pts_per_ray: int n_pts_per_ray: int
# pyre-fixme[13]: Attribute `random_sampling` is never initialized.
random_sampling: bool random_sampling: bool
add_input_samples: bool = True add_input_samples: bool = True
blurpool_weights: bool = False blurpool_weights: bool = False

View File

@ -24,9 +24,10 @@ from .rgb_net import RayNormalColoringNetwork
@registry.register @registry.register
class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module): # pyre-ignore[13] class SignedDistanceFunctionRenderer(BaseRenderer, torch.nn.Module):
render_features_dimensions: int = 3 render_features_dimensions: int = 3
object_bounding_sphere: float = 1.0 object_bounding_sphere: float = 1.0
# pyre-fixme[13]: Attribute `ray_tracer` is never initialized.
ray_tracer: RayTracing ray_tracer: RayTracing
ray_normal_coloring_network_args: DictConfig = get_default_args_field( ray_normal_coloring_network_args: DictConfig = get_default_args_field(
RayNormalColoringNetwork RayNormalColoringNetwork

View File

@ -16,7 +16,6 @@ from .feature_aggregator import FeatureAggregatorBase
from .view_sampler import ViewSampler from .view_sampler import ViewSampler
# pyre-ignore: 13
class ViewPooler(Configurable, torch.nn.Module): class ViewPooler(Configurable, torch.nn.Module):
""" """
Implements sampling of image-based features at the 2d projections of a set Implements sampling of image-based features at the 2d projections of a set
@ -35,8 +34,10 @@ class ViewPooler(Configurable, torch.nn.Module):
from a set of source images. FeatureAggregator executes step (4) above. from a set of source images. FeatureAggregator executes step (4) above.
""" """
# pyre-fixme[13]: Attribute `view_sampler` is never initialized.
view_sampler: ViewSampler view_sampler: ViewSampler
feature_aggregator_class_type: str = "AngleWeightedReductionFeatureAggregator" feature_aggregator_class_type: str = "AngleWeightedReductionFeatureAggregator"
# pyre-fixme[13]: Attribute `feature_aggregator` is never initialized.
feature_aggregator: FeatureAggregatorBase feature_aggregator: FeatureAggregatorBase
def __post_init__(self): def __post_init__(self):

View File

@ -156,7 +156,6 @@ def render_point_cloud_pytorch3d(
cumprod = torch.cat((torch.ones_like(cumprod[..., :1]), cumprod[..., :-1]), dim=-1) cumprod = torch.cat((torch.ones_like(cumprod[..., :1]), cumprod[..., :-1]), dim=-1)
depths = (weights * cumprod * fragments.zbuf).sum(dim=-1) depths = (weights * cumprod * fragments.zbuf).sum(dim=-1)
# add the rendering mask # add the rendering mask
# pyre-fixme[6]: For 1st param expected `Tensor` but got `float`.
render_mask = -torch.prod(1.0 - weights, dim=-1) + 1.0 render_mask = -torch.prod(1.0 - weights, dim=-1) + 1.0
# cat depths and render mask # cat depths and render mask

View File

@ -409,6 +409,7 @@ def _parse_mtl(
texture_files = {} texture_files = {}
material_name = "" material_name = ""
# pyre-fixme[9]: f has type `str`; used as `IO[typing.Any]`.
with _open_file(f, path_manager, "r") as f: with _open_file(f, path_manager, "r") as f:
for line in f: for line in f:
tokens = line.strip().split() tokens = line.strip().split()

View File

@ -756,10 +756,13 @@ def save_obj(
output_path = Path(f) output_path = Path(f)
# Save the .obj file # Save the .obj file
# pyre-fixme[9]: f has type `Union[Path, str]`; used as `IO[typing.Any]`.
with _open_file(f, path_manager, "w") as f: with _open_file(f, path_manager, "w") as f:
if save_texture: if save_texture:
# Add the header required for the texture info to be loaded correctly # Add the header required for the texture info to be loaded correctly
obj_header = "\nmtllib {0}.mtl\nusemtl mesh\n\n".format(output_path.stem) obj_header = "\nmtllib {0}.mtl\nusemtl mesh\n\n".format(output_path.stem)
# pyre-fixme[16]: Item `Path` of `Union[Path, str]` has no attribute
# `write`.
f.write(obj_header) f.write(obj_header)
_save( _save(
f, f,

View File

@ -617,6 +617,7 @@ def _splat_points_to_volumes(
w = wX * wY * wZ w = wX * wY * wZ
# valid - binary indicators of votes that fall into the volume # valid - binary indicators of votes that fall into the volume
# pyre-fixme[16]: `int` has no attribute `long`.
valid = ( valid = (
(0 <= X_) (0 <= X_)
* (X_ < grid_sizes_xyz[:, None, 0:1]) * (X_ < grid_sizes_xyz[:, None, 0:1])
@ -635,14 +636,19 @@ def _splat_points_to_volumes(
idx_valid = idx * valid + rand_idx * (1 - valid) idx_valid = idx * valid + rand_idx * (1 - valid)
w_valid = w * valid.type_as(w) w_valid = w * valid.type_as(w)
if mask is not None: if mask is not None:
# pyre-fixme[6]: For 1st argument expected `Tensor` but got `int`.
w_valid = w_valid * mask.type_as(w)[:, :, None] w_valid = w_valid * mask.type_as(w)[:, :, None]
# scatter add casts the votes into the weight accumulator # scatter add casts the votes into the weight accumulator
# and the feature accumulator # and the feature accumulator
# pyre-fixme[6]: For 3rd argument expected `Tensor` but got
# `Union[int, Tensor]`.
volume_densities.scatter_add_(1, idx_valid, w_valid) volume_densities.scatter_add_(1, idx_valid, w_valid)
# reshape idx_valid -> (minibatch, feature_dim, n_points) # reshape idx_valid -> (minibatch, feature_dim, n_points)
idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features) idx_valid = idx_valid.view(ba, 1, n_points).expand_as(points_features)
# pyre-fixme[16]: Item `int` of `Union[int, Tensor]` has no
# attribute `view`.
w_valid = w_valid.view(ba, 1, n_points) w_valid = w_valid.view(ba, 1, n_points)
# volume_features of shape (minibatch, feature_dim, n_voxels) # volume_features of shape (minibatch, feature_dim, n_voxels)
@ -724,6 +730,7 @@ def _round_points_to_volumes(
# valid - binary indicators of votes that fall into the volume # valid - binary indicators of votes that fall into the volume
# pyre-fixme[9]: grid_sizes has type `LongTensor`; used as `Tensor`. # pyre-fixme[9]: grid_sizes has type `LongTensor`; used as `Tensor`.
grid_sizes = grid_sizes.type_as(XYZ) grid_sizes = grid_sizes.type_as(XYZ)
# pyre-fixme[16]: `int` has no attribute `long`.
valid = ( valid = (
(0 <= X) (0 <= X)
* (X < grid_sizes_xyz[:, None, 0:1]) * (X < grid_sizes_xyz[:, None, 0:1])

View File

@ -497,6 +497,7 @@ def clip_faces(
faces_case3 = face_verts_unclipped[case3_unclipped_idx] faces_case3 = face_verts_unclipped[case3_unclipped_idx]
# index (0, 1, or 2) of the vertex in front of the clipping plane # index (0, 1, or 2) of the vertex in front of the clipping plane
# pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
p1_face_ind = torch.where(~faces_clipped_verts[case3_unclipped_idx])[1] p1_face_ind = torch.where(~faces_clipped_verts[case3_unclipped_idx])[1]
# Solve for the points p4, p5 that intersect the clipping plane # Solve for the points p4, p5 that intersect the clipping plane
@ -540,6 +541,7 @@ def clip_faces(
faces_case4 = face_verts_unclipped[case4_unclipped_idx] faces_case4 = face_verts_unclipped[case4_unclipped_idx]
# index (0, 1, or 2) of the vertex behind the clipping plane # index (0, 1, or 2) of the vertex behind the clipping plane
# pyre-fixme[61]: `faces_clipped_verts` is undefined, or not always defined.
p1_face_ind = torch.where(faces_clipped_verts[case4_unclipped_idx])[1] p1_face_ind = torch.where(faces_clipped_verts[case4_unclipped_idx])[1]
# Solve for the points p4, p5 that intersect the clipping plane # Solve for the points p4, p5 that intersect the clipping plane

View File

@ -369,6 +369,7 @@ def plot_scene(
# update camera viewpoint if provided # update camera viewpoint if provided
if viewpoints_eye_at_up_world is not None: if viewpoints_eye_at_up_world is not None:
# Use camera params for batch index or the first camera if only one provided. # Use camera params for batch index or the first camera if only one provided.
# pyre-fixme[61]: `n_viewpoint_cameras` is undefined, or not always defined.
viewpoint_idx = min(n_viewpoint_cameras - 1, subplot_idx) viewpoint_idx = min(n_viewpoint_cameras - 1, subplot_idx)
eye, at, up = (i[viewpoint_idx] for i in viewpoints_eye_at_up_world) eye, at, up = (i[viewpoint_idx] for i in viewpoints_eye_at_up_world)
@ -627,7 +628,7 @@ def _add_struct_from_batch(
def _add_mesh_trace( def _add_mesh_trace(
fig: go.Figure, # pyre-ignore[11] fig: go.Figure,
meshes: Meshes, meshes: Meshes,
trace_name: str, trace_name: str,
subplot_idx: int, subplot_idx: int,
@ -673,6 +674,7 @@ def _add_mesh_trace(
verts[~verts_used] = verts_center verts[~verts_used] = verts_center
row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1 row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
# pyre-fixme[16]: `Figure` has no attribute `add_trace`.
fig.add_trace( fig.add_trace(
go.Mesh3d( go.Mesh3d(
x=verts[:, 0], x=verts[:, 0],
@ -739,6 +741,7 @@ def _add_pointcloud_trace(
row = subplot_idx // ncols + 1 row = subplot_idx // ncols + 1
col = subplot_idx % ncols + 1 col = subplot_idx % ncols + 1
# pyre-fixme[16]: `Figure` has no attribute `add_trace`.
fig.add_trace( fig.add_trace(
go.Scatter3d( go.Scatter3d(
x=verts[:, 0], x=verts[:, 0],
@ -800,6 +803,7 @@ def _add_camera_trace(
x, y, z = all_cam_wires.detach().cpu().numpy().T.astype(float) x, y, z = all_cam_wires.detach().cpu().numpy().T.astype(float)
row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1 row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
# pyre-fixme[16]: `Figure` has no attribute `add_trace`.
fig.add_trace( fig.add_trace(
go.Scatter3d(x=x, y=y, z=z, marker={"size": 1}, name=trace_name), go.Scatter3d(x=x, y=y, z=z, marker={"size": 1}, name=trace_name),
row=row, row=row,
@ -894,6 +898,7 @@ def _add_ray_bundle_trace(
ray_lines = torch.cat((ray_lines, nan_tensor, ray_line)) ray_lines = torch.cat((ray_lines, nan_tensor, ray_line))
x, y, z = ray_lines.detach().cpu().numpy().T.astype(float) x, y, z = ray_lines.detach().cpu().numpy().T.astype(float)
row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1 row, col = subplot_idx // ncols + 1, subplot_idx % ncols + 1
# pyre-fixme[16]: `Figure` has no attribute `add_trace`.
fig.add_trace( fig.add_trace(
go.Scatter3d( go.Scatter3d(
x=x, x=x,
@ -988,7 +993,7 @@ def _gen_fig_with_subplots(
def _update_axes_bounds( def _update_axes_bounds(
verts_center: torch.Tensor, verts_center: torch.Tensor,
max_expand: float, max_expand: float,
current_layout: go.Scene, # pyre-ignore[11] current_layout: go.Scene,
) -> None: # pragma: no cover ) -> None: # pragma: no cover
""" """
Takes in the vertices' center point and max spread, and the current plotly figure Takes in the vertices' center point and max spread, and the current plotly figure
@ -1005,6 +1010,7 @@ def _update_axes_bounds(
# Ensure that within a subplot, the bounds capture all traces # Ensure that within a subplot, the bounds capture all traces
old_xrange, old_yrange, old_zrange = ( old_xrange, old_yrange, old_zrange = (
# pyre-fixme[16]: `Scene` has no attribute `__getitem__`.
current_layout["xaxis"]["range"], current_layout["xaxis"]["range"],
current_layout["yaxis"]["range"], current_layout["yaxis"]["range"],
current_layout["zaxis"]["range"], current_layout["zaxis"]["range"],
@ -1023,6 +1029,7 @@ def _update_axes_bounds(
xaxis = {"range": x_range} xaxis = {"range": x_range}
yaxis = {"range": y_range} yaxis = {"range": y_range}
zaxis = {"range": z_range} zaxis = {"range": z_range}
# pyre-fixme[16]: `Scene` has no attribute `update`.
current_layout.update({"xaxis": xaxis, "yaxis": yaxis, "zaxis": zaxis}) current_layout.update({"xaxis": xaxis, "yaxis": yaxis, "zaxis": zaxis})