defaulted grid_sizes in points2vols

Summary: Fix #873, that grid_sizes defaults to the wrong dtype in points2volumes code, and mask doesn't have a proper default.

Reviewed By: nikhilaravi

Differential Revision: D31503545

fbshipit-source-id: fa32a1a6074fc7ac7bdb362edfb5e5839866a472
This commit is contained in:
Jeremy Reizenstein
2021-10-16 14:40:55 -07:00
committed by Facebook GitHub Bot
parent 2f2466f472
commit 34b1b4ab8b
5 changed files with 24 additions and 4 deletions

View File

@@ -6,7 +6,7 @@
from itertools import product
from typing import Callable, Any
from typing import Any, Callable
import torch
from common_testing import get_random_cuda_device
@@ -14,6 +14,7 @@ from fvcore.common.benchmark import benchmark
from pytorch3d.common.workaround import symeig3x3
from test_symeig3x3 import TestSymEig3x3
torch.set_num_threads(1)
CUDA_DEVICE = get_random_cuda_device()

View File

@@ -16,6 +16,7 @@ from pytorch3d.io import save_obj
from pytorch3d.ops.iou_box3d import _box_planes, _box_triangles, box3d_overlap
from pytorch3d.transforms.rotation_conversions import random_rotation
OBJECTRON_TO_PYTORCH3D_FACE_IDX = [0, 4, 6, 2, 1, 5, 7, 3]
DATA_DIR = get_tests_dir() / "data"
DEBUG = False

View File

@@ -12,7 +12,10 @@ from typing import Tuple
import numpy as np
import torch
from common_testing import TestCaseMixin
from pytorch3d.ops import add_pointclouds_to_volumes
from pytorch3d.ops import (
add_pointclouds_to_volumes,
add_points_features_to_volume_densities_features,
)
from pytorch3d.ops.points_to_volumes import _points_to_volumes
from pytorch3d.ops.sample_points_from_meshes import sample_points_from_meshes
from pytorch3d.structures.meshes import Meshes
@@ -373,6 +376,17 @@ class TestPointsToVolumes(TestCaseMixin, unittest.TestCase):
else:
self.assertTrue(torch.isfinite(field.grad.data).all())
def test_defaulted_arguments(self):
points = torch.rand(30, 1000, 3)
features = torch.rand(30, 1000, 5)
_, densities = add_points_features_to_volume_densities_features(
points,
features,
torch.zeros(30, 1, 32, 32, 32),
torch.zeros(30, 5, 32, 32, 32),
)
self.assertClose(torch.sum(densities), torch.tensor(30 * 1000.0), atol=0.1)
def _check_volume_slice_color_density(
self, V, split_dim, interp_mode, clr_gt, slice_type, border=3
):