mirror of
				https://github.com/facebookresearch/pytorch3d.git
				synced 2025-11-04 18:02:14 +08:00 
			
		
		
		
	Fix: Correct concatenation of datasets in train conditioning
Summary: ChainDataset is iterable, and it toes not go along with a custom batch sampler. Reviewed By: bottler Differential Revision: D42742315 fbshipit-source-id: 40a715c8d24abe72cb2777634247d7467f628564
This commit is contained in:
		
							parent
							
								
									11959e0b24
								
							
						
					
					
						commit
						3239594f78
					
				@ -12,7 +12,7 @@ import torch
 | 
			
		||||
from pytorch3d.implicitron.tools.config import registry, ReplaceableBase
 | 
			
		||||
from torch.utils.data import (
 | 
			
		||||
    BatchSampler,
 | 
			
		||||
    ChainDataset,
 | 
			
		||||
    ConcatDataset,
 | 
			
		||||
    DataLoader,
 | 
			
		||||
    RandomSampler,
 | 
			
		||||
    Sampler,
 | 
			
		||||
@ -482,7 +482,7 @@ class SequenceDataLoaderMapProvider(DataLoaderMapProviderBase):
 | 
			
		||||
            num_batches=num_batches,
 | 
			
		||||
        )
 | 
			
		||||
        return DataLoader(
 | 
			
		||||
            ChainDataset([dataset, train_dataset]),
 | 
			
		||||
            ConcatDataset([dataset, train_dataset]),
 | 
			
		||||
            batch_sampler=sampler,
 | 
			
		||||
            **data_loader_kwargs,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user