mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-08-02 20:02:49 +08:00
apply black 20.8b1 formatting update
Summary: allow-large-files black_any_style Reviewed By: zertosh Differential Revision: D24325133 fbshipit-source-id: b4afe80d1e8b2bc993f4b8e3822c02964df47462
This commit is contained in:
parent
11a9f5ea30
commit
2d39723610
@ -53,7 +53,7 @@ def _compute_alphas(x, c_world):
|
||||
|
||||
|
||||
def _build_M(y, alphas, weight):
|
||||
""" Returns the matrix defining the reprojection equations.
|
||||
"""Returns the matrix defining the reprojection equations.
|
||||
Args:
|
||||
y: projected points in camera coordinates of size B x N x 2
|
||||
alphas: barycentric coordinates of size B x N x 4
|
||||
@ -90,7 +90,7 @@ def _build_M(y, alphas, weight):
|
||||
|
||||
|
||||
def _null_space(m, kernel_dim):
|
||||
""" Finds the null space (kernel) basis of the matrix
|
||||
"""Finds the null space (kernel) basis of the matrix
|
||||
Args:
|
||||
m: the batch of input matrices, B x N x 12
|
||||
kernel_dim: number of dimensions to approximate the kernel
|
||||
@ -106,7 +106,7 @@ def _null_space(m, kernel_dim):
|
||||
|
||||
|
||||
def _reproj_error(y_hat, y, weight, eps=1e-9):
|
||||
""" Projects estimated 3D points and computes the reprojection error
|
||||
"""Projects estimated 3D points and computes the reprojection error
|
||||
Args:
|
||||
y_hat: a batch of predicted 2D points in homogeneous coordinates
|
||||
y: a batch of ground-truth 2D points
|
||||
@ -121,7 +121,7 @@ def _reproj_error(y_hat, y, weight, eps=1e-9):
|
||||
|
||||
|
||||
def _algebraic_error(x_w_rotated, x_cam, weight):
|
||||
""" Computes the residual of Umeyama in 3D.
|
||||
"""Computes the residual of Umeyama in 3D.
|
||||
Args:
|
||||
x_w_rotated: The given 3D points rotated with the predicted camera.
|
||||
x_cam: the lifted 2D points y
|
||||
@ -135,7 +135,7 @@ def _algebraic_error(x_w_rotated, x_cam, weight):
|
||||
|
||||
|
||||
def _compute_norm_sign_scaling_factor(c_cam, alphas, x_world, y, weight, eps=1e-9):
|
||||
""" Given a solution, adjusts the scale and flip
|
||||
"""Given a solution, adjusts the scale and flip
|
||||
Args:
|
||||
c_cam: control points in camera coordinates
|
||||
alphas: barycentric coordinates of the points
|
||||
@ -167,7 +167,7 @@ def _compute_norm_sign_scaling_factor(c_cam, alphas, x_world, y, weight, eps=1e-
|
||||
|
||||
|
||||
def _gen_pairs(input, dim=-2, reducer=lambda a, b: ((a - b) ** 2).sum(dim=-1)):
|
||||
""" Generates all pairs of different rows and then applies the reducer
|
||||
"""Generates all pairs of different rows and then applies the reducer
|
||||
Args:
|
||||
input: a tensor
|
||||
dim: a dimension to generate pairs across
|
||||
@ -184,7 +184,7 @@ def _gen_pairs(input, dim=-2, reducer=lambda a, b: ((a - b) ** 2).sum(dim=-1)):
|
||||
|
||||
|
||||
def _kernel_vec_distances(v):
|
||||
""" Computes the coefficients for linearisation of the quadratic system
|
||||
"""Computes the coefficients for linearisation of the quadratic system
|
||||
to match all pairwise distances between 4 control points (dim=1).
|
||||
The last dimension corresponds to the coefficients for quadratic terms
|
||||
Bij = Bi * Bj, where Bi and Bj correspond to kernel vectors.
|
||||
@ -208,7 +208,7 @@ def _kernel_vec_distances(v):
|
||||
|
||||
|
||||
def _solve_lstsq_subcols(rhs, lhs, lhs_col_idx):
|
||||
""" Solves an over-determined linear system for selected LHS columns.
|
||||
"""Solves an over-determined linear system for selected LHS columns.
|
||||
A batched version of `torch.lstsq`.
|
||||
Args:
|
||||
rhs: right-hand side vectors
|
||||
@ -226,7 +226,7 @@ def _binary_sign(t):
|
||||
|
||||
|
||||
def _find_null_space_coords_1(kernel_dsts, cw_dst, eps=1e-9):
|
||||
""" Solves case 1 from the paper [1]; solve for 4 coefficients:
|
||||
"""Solves case 1 from the paper [1]; solve for 4 coefficients:
|
||||
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
|
||||
^ ^ ^ ^
|
||||
Args:
|
||||
@ -246,7 +246,7 @@ def _find_null_space_coords_1(kernel_dsts, cw_dst, eps=1e-9):
|
||||
|
||||
|
||||
def _find_null_space_coords_2(kernel_dsts, cw_dst):
|
||||
""" Solves case 2 from the paper; solve for 3 coefficients:
|
||||
"""Solves case 2 from the paper; solve for 3 coefficients:
|
||||
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
|
||||
^ ^ ^
|
||||
Args:
|
||||
@ -270,7 +270,7 @@ def _find_null_space_coords_2(kernel_dsts, cw_dst):
|
||||
|
||||
|
||||
def _find_null_space_coords_3(kernel_dsts, cw_dst, eps=1e-9):
|
||||
""" Solves case 3 from the paper; solve for 5 coefficients:
|
||||
"""Solves case 3 from the paper; solve for 5 coefficients:
|
||||
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
|
||||
^ ^ ^ ^ ^
|
||||
Args:
|
||||
|
@ -94,7 +94,7 @@ def convert_pointclouds_to_tensor(pcl: Union[torch.Tensor, "Pointclouds"]):
|
||||
|
||||
|
||||
def is_pointclouds(pcl: Union[torch.Tensor, "Pointclouds"]):
|
||||
""" Checks whether the input `pcl` is an instance of `Pointclouds`
|
||||
"""Checks whether the input `pcl` is an instance of `Pointclouds`
|
||||
by checking the existence of `points_padded` and `num_points_per_cloud`
|
||||
functions.
|
||||
"""
|
||||
|
@ -346,7 +346,7 @@ class SoftSilhouetteShader(nn.Module):
|
||||
self.blend_params = blend_params if blend_params is not None else BlendParams()
|
||||
|
||||
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
|
||||
""""
|
||||
""" "
|
||||
Only want to render the silhouette so RGB values can be ones.
|
||||
There is no need for lighting or texturing
|
||||
"""
|
||||
|
@ -111,9 +111,9 @@ def _try_place_rectangle(
|
||||
| |3 |
|
||||
| | |
|
||||
+-----------------------+----+------X
|
||||
y |1 |
|
||||
^ | --->x |
|
||||
| +-----------------------------------+
|
||||
y |1 |
|
||||
^ | --->x |
|
||||
| +-----------------------------------+
|
||||
|
||||
We want to place this rectangle.
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user