apply black 20.8b1 formatting update

Summary:
allow-large-files

black_any_style

Reviewed By: zertosh

Differential Revision: D24325133

fbshipit-source-id: b4afe80d1e8b2bc993f4b8e3822c02964df47462
This commit is contained in:
John Reese 2020-10-14 20:19:13 -07:00 committed by Facebook GitHub Bot
parent 11a9f5ea30
commit 2d39723610
8 changed files with 314 additions and 314 deletions

View File

@ -53,7 +53,7 @@ def _compute_alphas(x, c_world):
def _build_M(y, alphas, weight):
""" Returns the matrix defining the reprojection equations.
"""Returns the matrix defining the reprojection equations.
Args:
y: projected points in camera coordinates of size B x N x 2
alphas: barycentric coordinates of size B x N x 4
@ -90,7 +90,7 @@ def _build_M(y, alphas, weight):
def _null_space(m, kernel_dim):
""" Finds the null space (kernel) basis of the matrix
"""Finds the null space (kernel) basis of the matrix
Args:
m: the batch of input matrices, B x N x 12
kernel_dim: number of dimensions to approximate the kernel
@ -106,7 +106,7 @@ def _null_space(m, kernel_dim):
def _reproj_error(y_hat, y, weight, eps=1e-9):
""" Projects estimated 3D points and computes the reprojection error
"""Projects estimated 3D points and computes the reprojection error
Args:
y_hat: a batch of predicted 2D points in homogeneous coordinates
y: a batch of ground-truth 2D points
@ -121,7 +121,7 @@ def _reproj_error(y_hat, y, weight, eps=1e-9):
def _algebraic_error(x_w_rotated, x_cam, weight):
""" Computes the residual of Umeyama in 3D.
"""Computes the residual of Umeyama in 3D.
Args:
x_w_rotated: The given 3D points rotated with the predicted camera.
x_cam: the lifted 2D points y
@ -135,7 +135,7 @@ def _algebraic_error(x_w_rotated, x_cam, weight):
def _compute_norm_sign_scaling_factor(c_cam, alphas, x_world, y, weight, eps=1e-9):
""" Given a solution, adjusts the scale and flip
"""Given a solution, adjusts the scale and flip
Args:
c_cam: control points in camera coordinates
alphas: barycentric coordinates of the points
@ -167,7 +167,7 @@ def _compute_norm_sign_scaling_factor(c_cam, alphas, x_world, y, weight, eps=1e-
def _gen_pairs(input, dim=-2, reducer=lambda a, b: ((a - b) ** 2).sum(dim=-1)):
""" Generates all pairs of different rows and then applies the reducer
"""Generates all pairs of different rows and then applies the reducer
Args:
input: a tensor
dim: a dimension to generate pairs across
@ -184,7 +184,7 @@ def _gen_pairs(input, dim=-2, reducer=lambda a, b: ((a - b) ** 2).sum(dim=-1)):
def _kernel_vec_distances(v):
""" Computes the coefficients for linearisation of the quadratic system
"""Computes the coefficients for linearisation of the quadratic system
to match all pairwise distances between 4 control points (dim=1).
The last dimension corresponds to the coefficients for quadratic terms
Bij = Bi * Bj, where Bi and Bj correspond to kernel vectors.
@ -208,7 +208,7 @@ def _kernel_vec_distances(v):
def _solve_lstsq_subcols(rhs, lhs, lhs_col_idx):
""" Solves an over-determined linear system for selected LHS columns.
"""Solves an over-determined linear system for selected LHS columns.
A batched version of `torch.lstsq`.
Args:
rhs: right-hand side vectors
@ -226,7 +226,7 @@ def _binary_sign(t):
def _find_null_space_coords_1(kernel_dsts, cw_dst, eps=1e-9):
""" Solves case 1 from the paper [1]; solve for 4 coefficients:
"""Solves case 1 from the paper [1]; solve for 4 coefficients:
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
^ ^ ^ ^
Args:
@ -246,7 +246,7 @@ def _find_null_space_coords_1(kernel_dsts, cw_dst, eps=1e-9):
def _find_null_space_coords_2(kernel_dsts, cw_dst):
""" Solves case 2 from the paper; solve for 3 coefficients:
"""Solves case 2 from the paper; solve for 3 coefficients:
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
^ ^ ^
Args:
@ -270,7 +270,7 @@ def _find_null_space_coords_2(kernel_dsts, cw_dst):
def _find_null_space_coords_3(kernel_dsts, cw_dst, eps=1e-9):
""" Solves case 3 from the paper; solve for 5 coefficients:
"""Solves case 3 from the paper; solve for 5 coefficients:
[B11 B22 B33 B44 B12 B13 B14 B23 B24 B34]
^ ^ ^ ^ ^
Args:

View File

@ -94,7 +94,7 @@ def convert_pointclouds_to_tensor(pcl: Union[torch.Tensor, "Pointclouds"]):
def is_pointclouds(pcl: Union[torch.Tensor, "Pointclouds"]):
""" Checks whether the input `pcl` is an instance of `Pointclouds`
"""Checks whether the input `pcl` is an instance of `Pointclouds`
by checking the existence of `points_padded` and `num_points_per_cloud`
functions.
"""

View File

@ -346,7 +346,7 @@ class SoftSilhouetteShader(nn.Module):
self.blend_params = blend_params if blend_params is not None else BlendParams()
def forward(self, fragments, meshes, **kwargs) -> torch.Tensor:
""""
""" "
Only want to render the silhouette so RGB values can be ones.
There is no need for lighting or texturing
"""

View File

@ -111,9 +111,9 @@ def _try_place_rectangle(
| |3 |
| | |
+-----------------------+----+------X
y |1 |
^ | --->x |
| +-----------------------------------+
y |1 |
^ | --->x |
| +-----------------------------------+
We want to place this rectangle.