Harmonic embedding

Summary: Implements the positional embedding of NeRF

Reviewed By: nikhilaravi

Differential Revision: D25684406

fbshipit-source-id: 9f3b657babacff48bd6a0497d7a859607ffa5f89
This commit is contained in:
David Novotny 2021-02-02 05:42:59 -08:00 committed by Facebook GitHub Bot
parent 7cbda3ec17
commit 1e82341da7

View File

@ -0,0 +1,73 @@
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import torch
class HarmonicEmbedding(torch.nn.Module):
def __init__(
self,
n_harmonic_functions: int = 6,
omega0: float = 1.0,
logspace: bool = True,
):
"""
Given an input tensor `x` of shape [minibatch, ... , dim],
the harmonic embedding layer converts each feature
in `x` into a series of harmonic features `embedding`
as follows:
```
embedding[..., i*dim:(i+1)*dim] = [
sin(x[..., i]),
sin(f_1*x[..., i]),
sin(f_2*x[..., i]),
...
sin(f_N * x[..., i]),
cos(x[..., i]),
cos(f_1*x[..., i]),
cos(f_2*x[..., i]),
...
cos(f_N * x[..., i])
]
```
where N corresponds to `n_harmonic_functions`, and f_i is a scalar
denoting the i-th frequency of the harmonic embedding.
If `logspace==True`, the frequencies `[f_1, ..., f_N]` are
either powers of 2:
`f_1, ..., f_N = 2**torch.arange(n_harmonic_functions)`
If `logspace==False`, frequencies are linearly spaced between
`1.0` and `2**(n_harmonic_functions-1)`:
`f_1, ..., f_N = torch.linspace(
1.0, 2**(n_harmonic_functions-1), n_harmonic_functions
)`
Note that `x` is also premultiplied by the base frequency `omega0`
before evaluting the harmonic functions.
"""
super().__init__()
if logspace:
frequencies = 2.0 ** torch.arange(
n_harmonic_functions,
dtype=torch.float32,
)
else:
frequencies = torch.linspace(
1.0,
2.0 ** (n_harmonic_functions - 1),
n_harmonic_functions,
dtype=torch.float32,
)
self.register_buffer("_frequencies", omega0 * frequencies)
def forward(self, x: torch.Tensor):
"""
Args:
x: tensor of shape [..., dim]
Returns:
embedding: a harmonic embedding of `x`
of shape [..., n_harmonic_functions * dim * 2]
"""
embed = (x[..., None] * self._frequencies).view(*x.shape[:-1], -1)
return torch.cat((embed.sin(), embed.cos()), dim=-1)