mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2026-01-17 03:40:34 +08:00
lint fixes
Summary: Ran the linter. TODO: need to update the linter as per D21353065. Reviewed By: bottler Differential Revision: D21362270 fbshipit-source-id: ad0e781de0a29f565ad25c43bc94a19b1828c020
This commit is contained in:
committed by
Facebook GitHub Bot
parent
0c595dcf5b
commit
0eca74fa5f
@@ -112,11 +112,13 @@ class TestICP(TestCaseMixin, unittest.TestCase):
|
||||
]
|
||||
|
||||
# run full icp
|
||||
converged, _, Xt, (
|
||||
R,
|
||||
T,
|
||||
s,
|
||||
), t_hist = points_alignment.iterative_closest_point(
|
||||
(
|
||||
converged,
|
||||
_,
|
||||
Xt,
|
||||
(R, T, s),
|
||||
t_hist,
|
||||
) = points_alignment.iterative_closest_point(
|
||||
X,
|
||||
Y,
|
||||
estimate_scale=False,
|
||||
@@ -130,11 +132,13 @@ class TestICP(TestCaseMixin, unittest.TestCase):
|
||||
t_init = t_hist[min(2, len(t_hist) - 1)]
|
||||
|
||||
# rerun the ICP
|
||||
converged_init, _, Xt_init, (
|
||||
R_init,
|
||||
T_init,
|
||||
s_init,
|
||||
), t_hist_init = points_alignment.iterative_closest_point(
|
||||
(
|
||||
converged_init,
|
||||
_,
|
||||
Xt_init,
|
||||
(R_init, T_init, s_init),
|
||||
t_hist_init,
|
||||
) = points_alignment.iterative_closest_point(
|
||||
X,
|
||||
Y,
|
||||
init_transform=t_init,
|
||||
@@ -182,11 +186,13 @@ class TestICP(TestCaseMixin, unittest.TestCase):
|
||||
n_points_Y = Y_pcl.num_points_per_cloud()
|
||||
|
||||
# run icp with Pointlouds inputs
|
||||
_, _, Xt_pcl, (
|
||||
R_pcl,
|
||||
T_pcl,
|
||||
s_pcl,
|
||||
), _ = points_alignment.iterative_closest_point(
|
||||
(
|
||||
_,
|
||||
_,
|
||||
Xt_pcl,
|
||||
(R_pcl, T_pcl, s_pcl),
|
||||
_,
|
||||
) = points_alignment.iterative_closest_point(
|
||||
X_pcl,
|
||||
Y_pcl,
|
||||
estimate_scale=estimate_scale,
|
||||
@@ -263,11 +269,13 @@ class TestICP(TestCaseMixin, unittest.TestCase):
|
||||
]
|
||||
|
||||
# run the icp algorithm
|
||||
converged, _, _, (
|
||||
R_ours,
|
||||
T_ours,
|
||||
s_ours,
|
||||
), _ = points_alignment.iterative_closest_point(
|
||||
(
|
||||
converged,
|
||||
_,
|
||||
_,
|
||||
(R_ours, T_ours, s_ours),
|
||||
_,
|
||||
) = points_alignment.iterative_closest_point(
|
||||
X,
|
||||
Y,
|
||||
estimate_scale=estimate_scale,
|
||||
|
||||
Reference in New Issue
Block a user