Joining mismatched texture maps on CUDA #175

Summary:
Use nn.functional.interpolate instead of a TorchVision transform to resize texture maps to a common value. This works on all devices. This fixes issue #175.

Also fix the condition so it only happens when needed.

Reviewed By: nikhilaravi

Differential Revision: D21324510

fbshipit-source-id: c50eb06514984995bd81f2c44079be6e0b4098e4
This commit is contained in:
Jeremy Reizenstein 2020-05-01 05:17:44 -07:00 committed by Facebook GitHub Bot
parent e64e0d17ef
commit 0c595dcf5b
2 changed files with 15 additions and 11 deletions

View File

@ -3,7 +3,7 @@
from typing import List, Optional, Union
import torch
import torchvision.transforms as T
from torch.nn.functional import interpolate
from .utils import padded_to_list, padded_to_packed
@ -18,10 +18,10 @@ def _pad_texture_maps(images: List[torch.Tensor]) -> torch.Tensor:
Pad all texture images so they have the same height and width.
Args:
images: list of N tensors of shape (H, W)
images: list of N tensors of shape (H, W, 3)
Returns:
tex_maps: Tensor of shape (N, max_H, max_W)
tex_maps: Tensor of shape (N, max_H, max_W, 3)
"""
tex_maps = []
max_H = 0
@ -35,15 +35,13 @@ def _pad_texture_maps(images: List[torch.Tensor]) -> torch.Tensor:
tex_maps.append(im)
max_shape = (max_H, max_W)
# If all texture images are not the same size then resize to the
# largest size.
resize = T.Compose([T.ToPILImage(), T.Resize(size=max_shape), T.ToTensor()])
for i, image in enumerate(tex_maps):
if image.shape != max_shape:
# ToPIL takes and returns a C x H x W tensor
image = resize(image.permute(2, 0, 1)).permute(1, 2, 0)
tex_maps[i] = image
if image.shape[:2] != max_shape:
image_BCHW = image.permute(2, 0, 1)[None]
new_image_BCHW = interpolate(
image_BCHW, size=max_shape, mode="bilinear", align_corners=False
)
tex_maps[i] = new_image_BCHW[0].permute(1, 2, 0)
tex_maps = torch.stack(tex_maps, dim=0) # (num_tex_maps, max_H, max_W, 3)
return tex_maps

View File

@ -607,6 +607,12 @@ class TestMeshObjIO(TestCaseMixin, unittest.TestCase):
check_triple(mesh, mesh3)
self.assertTupleEqual(mesh.textures.maps_padded().shape, (1, 1024, 1024, 3))
# Try mismatched texture map sizes, which needs a call to interpolate()
mesh2048 = mesh.clone()
maps = mesh.textures.maps_padded()
mesh2048.textures._maps_padded = torch.cat([maps, maps], dim=1)
join_meshes_as_batch([mesh.to("cuda:0"), mesh2048.to("cuda:0")])
mesh_notex = load_objs_as_meshes([obj_filename], load_textures=False)
mesh3_notex = load_objs_as_meshes(
[obj_filename, obj_filename, obj_filename], load_textures=False