mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-12-20 14:20:38 +08:00
Convert directory fbcode/vision to use the Ruff Formatter
Summary:
Converts the directory specified to use the Ruff formatter in pyfmt
ruff_dog
If this diff causes merge conflicts when rebasing, please run
`hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt`
on your diff, and amend any changes before rebasing onto latest.
That should help reduce or eliminate any merge conflicts.
allow-large-files
Reviewed By: bottler
Differential Revision: D66472063
fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
This commit is contained in:
committed by
Facebook GitHub Bot
parent
f6c2ca6bfc
commit
055ab3a2e3
@@ -7,7 +7,7 @@
|
||||
|
||||
# pyre-unsafe
|
||||
|
||||
""""
|
||||
""" "
|
||||
This file is the entry point for launching experiments with Implicitron.
|
||||
|
||||
Launch Training
|
||||
@@ -44,6 +44,7 @@ The outputs of the experiment are saved and logged in multiple ways:
|
||||
config file.
|
||||
|
||||
"""
|
||||
|
||||
import logging
|
||||
import os
|
||||
import warnings
|
||||
|
||||
@@ -26,7 +26,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ModelFactoryBase(ReplaceableBase):
|
||||
|
||||
resume: bool = True # resume from the last checkpoint
|
||||
|
||||
def __call__(self, **kwargs) -> ImplicitronModelBase:
|
||||
|
||||
@@ -161,7 +161,6 @@ class ImplicitronTrainingLoop(TrainingLoopBase):
|
||||
for epoch in range(start_epoch, self.max_epochs):
|
||||
# automatic new_epoch and plotting of stats at every epoch start
|
||||
with stats:
|
||||
|
||||
# Make sure to re-seed random generators to ensure reproducibility
|
||||
# even after restart.
|
||||
seed_all_random_engines(seed + epoch)
|
||||
|
||||
@@ -53,12 +53,8 @@ class TestExperiment(unittest.TestCase):
|
||||
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
|
||||
"JsonIndexDatasetMapProvider"
|
||||
)
|
||||
dataset_args = (
|
||||
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
|
||||
)
|
||||
dataloader_args = (
|
||||
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
|
||||
)
|
||||
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
|
||||
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
|
||||
dataset_args.category = "skateboard"
|
||||
dataset_args.test_restrict_sequence_id = 0
|
||||
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
|
||||
@@ -94,12 +90,8 @@ class TestExperiment(unittest.TestCase):
|
||||
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_class_type = (
|
||||
"JsonIndexDatasetMapProvider"
|
||||
)
|
||||
dataset_args = (
|
||||
cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
|
||||
)
|
||||
dataloader_args = (
|
||||
cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
|
||||
)
|
||||
dataset_args = cfg.data_source_ImplicitronDataSource_args.dataset_map_provider_JsonIndexDatasetMapProvider_args
|
||||
dataloader_args = cfg.data_source_ImplicitronDataSource_args.data_loader_map_provider_SequenceDataLoaderMapProvider_args
|
||||
dataset_args.category = "skateboard"
|
||||
dataset_args.test_restrict_sequence_id = 0
|
||||
dataset_args.dataset_root = "manifold://co3d/tree/extracted"
|
||||
@@ -111,9 +103,7 @@ class TestExperiment(unittest.TestCase):
|
||||
cfg.training_loop_ImplicitronTrainingLoop_args.max_epochs = 2
|
||||
cfg.training_loop_ImplicitronTrainingLoop_args.store_checkpoints = False
|
||||
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.lr_policy = "Exponential"
|
||||
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = (
|
||||
2
|
||||
)
|
||||
cfg.optimizer_factory_ImplicitronOptimizerFactory_args.exponential_lr_step_size = 2
|
||||
|
||||
if DEBUG:
|
||||
experiment.dump_cfg(cfg)
|
||||
|
||||
@@ -81,8 +81,9 @@ class TestOptimizerFactory(unittest.TestCase):
|
||||
|
||||
def test_param_overrides_self_param_group_assignment(self):
|
||||
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
||||
na, nb = Node(params=[pa]), Node(
|
||||
params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}
|
||||
na, nb = (
|
||||
Node(params=[pa]),
|
||||
Node(params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}),
|
||||
)
|
||||
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
|
||||
param_groups = self._get_param_groups(root)
|
||||
|
||||
@@ -194,7 +194,6 @@ class Stats:
|
||||
it = self.it[stat_set]
|
||||
|
||||
for stat in self.log_vars:
|
||||
|
||||
if stat not in self.stats[stat_set]:
|
||||
self.stats[stat_set][stat] = AverageMeter()
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
|
||||
|
||||
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
|
||||
def main(cfg: DictConfig):
|
||||
|
||||
# Device on which to run.
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
|
||||
@@ -42,7 +42,6 @@ class TestRaysampler(unittest.TestCase):
|
||||
cameras, rays = [], []
|
||||
|
||||
for _ in range(batch_size):
|
||||
|
||||
R = random_rotations(1)
|
||||
T = torch.randn(1, 3)
|
||||
focal_length = torch.rand(1, 2) + 0.5
|
||||
|
||||
@@ -25,7 +25,6 @@ CONFIG_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), "configs"
|
||||
|
||||
@hydra.main(config_path=CONFIG_DIR, config_name="lego")
|
||||
def main(cfg: DictConfig):
|
||||
|
||||
# Set the relevant seeds for reproducibility.
|
||||
np.random.seed(cfg.seed)
|
||||
torch.manual_seed(cfg.seed)
|
||||
@@ -219,7 +218,6 @@ def main(cfg: DictConfig):
|
||||
|
||||
# Validation
|
||||
if epoch % cfg.validation_epoch_interval == 0 and epoch > 0:
|
||||
|
||||
# Sample a validation camera/image.
|
||||
val_batch = next(val_dataloader.__iter__())
|
||||
val_image, val_camera, camera_idx = val_batch[0].values()
|
||||
|
||||
Reference in New Issue
Block a user