mirror of
https://github.com/facebookresearch/pytorch3d.git
synced 2025-07-31 10:52:50 +08:00
Summary: Converts the directory specified to use the Ruff formatter in pyfmt ruff_dog If this diff causes merge conflicts when rebasing, please run `hg status -n -0 --change . -I '**/*.{py,pyi}' | xargs -0 arc pyfmt` on your diff, and amend any changes before rebasing onto latest. That should help reduce or eliminate any merge conflicts. allow-large-files Reviewed By: bottler Differential Revision: D66472063 fbshipit-source-id: 35841cb397e4f8e066e2159550d2f56b403b1bef
187 lines
7.6 KiB
Python
187 lines
7.6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD-style license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
|
|
# pyre-unsafe
|
|
|
|
import logging
|
|
import os
|
|
import unittest
|
|
|
|
import torch
|
|
from pytorch3d.implicitron.tools.config import expand_args_fields, get_default_args
|
|
|
|
from ..impl.optimizer_factory import (
|
|
ImplicitronOptimizerFactory,
|
|
logger as factory_logger,
|
|
)
|
|
|
|
internal = os.environ.get("FB_TEST", False)
|
|
|
|
|
|
class TestOptimizerFactory(unittest.TestCase):
|
|
def setUp(self) -> None:
|
|
torch.manual_seed(42)
|
|
expand_args_fields(ImplicitronOptimizerFactory)
|
|
|
|
def _get_param_groups(self, model):
|
|
default_cfg = get_default_args(ImplicitronOptimizerFactory)
|
|
factory = ImplicitronOptimizerFactory(default_cfg)
|
|
oldlevel = factory_logger.level
|
|
factory_logger.setLevel(logging.ERROR)
|
|
out = factory._get_param_groups(model)
|
|
factory_logger.setLevel(oldlevel)
|
|
return out
|
|
|
|
def _assert_allin(self, a, param_groups, key):
|
|
"""
|
|
Asserts that all the parameters in a are in the group
|
|
named by key.
|
|
"""
|
|
with self.subTest(f"Testing key {key}"):
|
|
b = param_groups[key]
|
|
for el in a:
|
|
if el not in b:
|
|
raise ValueError(
|
|
f"Element {el}\n\n from:\n\n {a}\n\n not in:\n\n {b}\n\n."
|
|
+ f" Full param groups = \n\n{param_groups}"
|
|
)
|
|
for el in b:
|
|
if el not in a:
|
|
raise ValueError(
|
|
f"Element {el}\n\n from:\n\n {b}\n\n not in:\n\n {a}\n\n."
|
|
+ f" Full param groups = \n\n{param_groups}"
|
|
)
|
|
|
|
def test_default_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc])
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pb, pc], param_groups, "default")
|
|
|
|
def test_member_overrides_default_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb")
|
|
|
|
def test_self_overrides_member_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb], param_groups={"self": "pb_self"})
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb_self")
|
|
assert len(param_groups["pb_member"]) == 0, param_groups
|
|
|
|
def test_param_overrides_self_param_group_assignment(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = (
|
|
Node(params=[pa]),
|
|
Node(params=[pb], param_groups={"self": "pb_self", "p1": "pb_param"}),
|
|
)
|
|
root = Node(children=[na, nb], params=[pc], param_groups={"m1": "pb_member"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pc], param_groups, "default")
|
|
self._assert_allin([pb], param_groups, "pb_self")
|
|
assert len(param_groups["pb_member"]) == 0, param_groups
|
|
|
|
def test_no_param_groups_defined(self):
|
|
pa, pb, pc = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(3)]
|
|
na, nb = Node(params=[pa]), Node(params=[pb])
|
|
root = Node(children=[na, nb], params=[pc])
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa, pb, pc], param_groups, "default")
|
|
|
|
def test_double_dotted(self):
|
|
pa, pb = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(2)]
|
|
na = Node(params=[pa, pb])
|
|
nb = Node(children=[na])
|
|
root = Node(children=[nb], param_groups={"m0.m0.p0": "X", "m0.m0": "Y"})
|
|
param_groups = self._get_param_groups(root)
|
|
self._assert_allin([pa], param_groups, "X")
|
|
self._assert_allin([pb], param_groups, "Y")
|
|
|
|
def test_tree_param_groups_defined(self):
|
|
"""
|
|
Test generic tree assignment.
|
|
|
|
A0
|
|
|---------------------------
|
|
| | |
|
|
Bb M J-
|
|
|----- |-------
|
|
| | | |
|
|
C Ddg K Ll
|
|
|--------------
|
|
| | | |
|
|
E4 Ff G H-
|
|
|
|
All nodes have one parameter. Character next to the capital
|
|
letter means they have added something to their `parameter_groups`:
|
|
- small letter same as capital means self is set to that letter
|
|
- small letter different then capital means that member is set
|
|
(the one that is named like that)
|
|
- number means parameter's parameter_group is set like that
|
|
- "-" means it does not have `parameter_groups` member
|
|
"""
|
|
p = [torch.nn.Parameter(data=torch.tensor(i * 1.0)) for i in range(12)]
|
|
L = Node(params=[p[11]], param_groups={"self": "l"})
|
|
K = Node(params=[p[10]], param_groups={})
|
|
J = Node(params=[p[9]], param_groups=None, children=[K, L])
|
|
M = Node(params=[p[8]], param_groups={})
|
|
|
|
E = Node(params=[p[4]], param_groups={"p0": "4"})
|
|
F = Node(params=[p[5]], param_groups={"self": "f"})
|
|
G = Node(params=[p[6]], param_groups={})
|
|
H = Node(params=[p[7]], param_groups=None)
|
|
|
|
D = Node(
|
|
params=[p[3]], param_groups={"self": "d", "m2": "g"}, children=[E, F, G, H]
|
|
)
|
|
C = Node(params=[p[2]], param_groups={})
|
|
|
|
B = Node(params=[p[1]], param_groups={"self": "b"}, children=[C, D])
|
|
|
|
A = Node(params=[p[0]], param_groups={"p0": "0"}, children=[B, M, J])
|
|
|
|
param_groups = self._get_param_groups(A)
|
|
|
|
# if parts of the group belong to two different categories assert is repeated
|
|
# parameter level
|
|
self._assert_allin([p[0]], param_groups, "0")
|
|
self._assert_allin([p[4]], param_groups, "4")
|
|
# self level
|
|
self._assert_allin([p[5]], param_groups, "f")
|
|
self._assert_allin([p[11]], param_groups, "l")
|
|
self._assert_allin([p[2], p[1]], param_groups, "b")
|
|
self._assert_allin([p[7], p[3]], param_groups, "d")
|
|
# member level
|
|
self._assert_allin([p[6]], param_groups, "g")
|
|
# inherit level
|
|
self._assert_allin([p[7], p[3]], param_groups, "d")
|
|
self._assert_allin([p[2], p[1]], param_groups, "b")
|
|
# default level
|
|
self._assert_allin([p[8], p[9], p[10]], param_groups, "default")
|
|
|
|
|
|
class Node(torch.nn.Module):
|
|
def __init__(self, children=(), params=(), param_groups=None):
|
|
super().__init__()
|
|
for i, child in enumerate(children):
|
|
self.add_module("m" + str(i), child)
|
|
for i, param in enumerate(params):
|
|
setattr(self, "p" + str(i), param)
|
|
if param_groups is not None:
|
|
self.param_groups = param_groups
|
|
|
|
def __str__(self):
|
|
return (
|
|
"modules:\n" + str(self._modules) + "\nparameters\n" + str(self._parameters)
|
|
)
|