update for mooc OS labs
This commit is contained in:
parent
6a4eb1f465
commit
87059df293
BIN
homework/hw1.pdf
BIN
homework/hw1.pdf
Binary file not shown.
@ -1,88 +0,0 @@
|
||||
第二次作业
|
||||
|
||||
OS concept ver7课本第8章、第九章的习题:
|
||||
|
||||
8.3 Given ?ve memory partitions of 100 KB, 500 KB, 200 KB, 300 KB,and
|
||||
600 KB (in order), how would each of the ?rst-?t, best-?t, and worst-?t
|
||||
algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in
|
||||
order)?Which algorithm makes the most ef?cient use of memory?
|
||||
|
||||
8.4 Most systems allow programs to allocate more memory to its address
|
||||
space during execution.Data allocated in the heap segments of programs
|
||||
is an example of such allocated memory. What is required to support
|
||||
dynamic memory allocation in the following schemes:
|
||||
a. contiguous-memory allocation
|
||||
b. pure segmentation
|
||||
c. pure paging
|
||||
|
||||
8.12 Consider the following segment table:
|
||||
Segment Base Length
|
||||
0 219 600
|
||||
1 2300 14
|
||||
2 90 100
|
||||
3 1327 580
|
||||
4 1952 96
|
||||
What are the physical addresses for the following logical addresses?
|
||||
a. 0,430
|
||||
b. 1,10
|
||||
c. 2,500
|
||||
d. 3,400
|
||||
e. 4,112
|
||||
|
||||
9.5 Assume we have a demand-paged memory. The page table is held in
|
||||
registers. It takes 8 milliseconds to service a page fault if an empty page
|
||||
is available or the replaced page is not modi?ed, and 20 milliseconds if
|
||||
the replaced page is modi?ed. Memory access time is 100 nanoseconds.
|
||||
Assume that the page to be replaced is modi?ed 70 percent of the time.
|
||||
What is the maximum acceptable page-fault rate for an effective access
|
||||
time of no more than 200 nanoseconds?
|
||||
|
||||
|
||||
9.13 A page-replacement algorithm should minimize the number of page
|
||||
faults. We can do this minimization by distributing heavily used pages
|
||||
evenly over all of memory, rather than having them compete for a small
|
||||
number of page frames.We can associatewith each page frame a counter
|
||||
of the number of pages that are associated with that frame. Then, to
|
||||
replace a page, we search for the page frame with the smallest counter.
|
||||
a. De?ne a page-replacement algorithmusing this basic idea. Specif-
|
||||
ically address the problems of (1) what the initial value of the
|
||||
counters is, (2) when counters are increased, (3) when counters
|
||||
are decreased, and (4) how the page to be replaced is selected.
|
||||
b. Howmany page faults occur for your algorithmfor the following
|
||||
reference string, for four page frames?
|
||||
1, 2, 3, 4, 5, 3, 4, 1, 6, 7, 8, 7, 8, 9, 7, 8, 9, 5, 4, 5, 4, 2.
|
||||
c. What is the minimumnumber of page faults for an optimal page-
|
||||
replacement strategy for the reference string in part b with four
|
||||
page frames?
|
||||
|
||||
1. 请证明LRU算法不会存在belady现象。
|
||||
|
||||
2. 请证明或详细说明FIFO/CLOCK/Enhanced CLOCK是否有belady现象?
|
||||
|
||||
|
||||
实验相关
|
||||
------------------
|
||||
|
||||
1 lab1的proj1的ucore的代码中是否有使用了绝对地址(编译期间指定的绝对内存地址)?
|
||||
|
||||
2 lab2 的ucore的小os的load addr和link addr分别是多少?
|
||||
|
||||
3 ucore用了哪个数据结构来管理空闲内存,位于内存什么地方,占多少空间?
|
||||
|
||||
4 请考虑在ucore中实现second chance/enhanced clock页替换算法的设计思路。主要描述如何利用相关x86相关硬件、如何设计数据结构,大致要实现哪些函数,函数的大致功能和整体流程。
|
||||
|
||||
5 实现enhanced clock algorithm中,
|
||||
IF before clock sweep: (used,dirty) = (1,1), THEN after clock sweep: (used, dirty)=(0,1).
|
||||
如果把上述转换改为:
|
||||
IF before clock sweep: (used,dirty) = (1,1), THEN after clock sweep: (used, dirty)=(1,0).
|
||||
是否可行?
|
||||
|
||||
6 在clock算法实现中,pte中的uesd bit位是否可以让os来设置1 or 0 ? 为什么?
|
||||
|
||||
7 在enhanced clock算法中的dirty bit位是否可以让os来设置1 or 0 ? 为什么?
|
||||
|
||||
8 如果在ucore中实现精确的LRU算法,如何设计?需要硬件和OS分别完成什么事情?
|
||||
|
||||
9 如果在ucore中实现工作集页替换算法和缺页频率替换算法,如何设计?
|
||||
|
||||
|
@ -1,15 +0,0 @@
|
||||
#第三次作业 process/thread
|
||||
1. process与thread在实现上和执行上有何区别?
|
||||
2. process与program(程序)的区别与联系是什么?
|
||||
3. process的执行状态转换图是啥?各个状态的含义是什么?
|
||||
4. thread的实现方式有几种?这几种有何区别?
|
||||
5. fork和exec的执行逻辑(大致要完成的事情)是什么?
|
||||
6. 父进程与子进程之间在内容上有何差异?在执行上有何差异?
|
||||
7. 父进程fork完子进程后,这两个进程在执行的过程中是否有先后顺序?
|
||||
8. 进程/线程上下文切换的执行逻辑是什么?二者有无区别?如有,区别是啥?
|
||||
9. 为何vfork机制在有了Copy on Write (简称COW)技术后意义变得不大了?
|
||||
10. 如何在ucore中实现COW技术?
|
||||
11. 进程有几个栈?栈的作用是什么?
|
||||
12. exec的内核实现中,如何返回到新的进程的入口点,并正确执行用户态的进程?
|
||||
13. 内核线程和用户进程的mm结构有何区别?为什么?
|
||||
14. 如何在ucore中实现可在用户态执行的线程?
|
@ -207,6 +207,8 @@ TARGETS: $(TARGETS)
|
||||
.DEFAULT_GOAL := TARGETS
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG)
|
||||
$(V)$(QEMU) -monitor stdio -hda $< -serial null
|
||||
qemu: $(UCOREIMG)
|
||||
$(V)$(QEMU) -parallel stdio -hda $< -serial null
|
||||
|
||||
|
@ -231,6 +231,8 @@ targets: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG)
|
||||
|
||||
.PHONY: qemu qemu-nox gdb debug debug-mon debug-nox
|
||||
qemu-mon: targets
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: targets
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -225,6 +225,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -229,6 +229,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -268,6 +268,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -268,6 +268,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -268,6 +268,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -308,6 +308,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback -drive file=$(SFSIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox monitor
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG) $(SFSIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG) $(SFSIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-elf-qemu > /dev/null; \
|
||||
then echo 'i386-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -197,6 +197,17 @@ TARGETS: $(TARGETS)
|
||||
.DEFAULT_GOAL := TARGETS
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
lab1-mon: $(UCOREIMG)
|
||||
$(V)$(TERMINAL) -e "$(QEMU) -S -s -d in_asm -D $(BINDIR)/q.log -monitor stdio -hda $< -serial null"
|
||||
$(V)sleep 2
|
||||
$(V)$(TERMINAL) -e "gdb -q -x tools/lab1init"
|
||||
debug-mon: $(UCOREIMG)
|
||||
# $(V)$(QEMU) -S -s -monitor stdio -hda $< -serial null &
|
||||
$(V)$(TERMINAL) -e "$(QEMU) -S -s -monitor stdio -hda $< -serial null"
|
||||
$(V)sleep 2
|
||||
$(V)$(TERMINAL) -e "gdb -q -x tools/moninit"
|
||||
qemu-mon: $(UCOREIMG)
|
||||
$(V)$(QEMU) -monitor stdio -hda $< -serial null
|
||||
qemu: $(UCOREIMG)
|
||||
$(V)$(QEMU) -parallel stdio -hda $< -serial null
|
||||
|
||||
|
@ -27,20 +27,20 @@ start:
|
||||
# address line 20 is tied low, so that addresses higher than
|
||||
# 1MB wrap around to zero by default. This code undoes this.
|
||||
seta20.1:
|
||||
inb $0x64, %al # Wait for not busy
|
||||
inb $0x64, %al # Wait for not busy(8042 input buffer empty).
|
||||
testb $0x2, %al
|
||||
jnz seta20.1
|
||||
|
||||
movb $0xd1, %al # 0xd1 -> port 0x64
|
||||
outb %al, $0x64
|
||||
outb %al, $0x64 # 0xd1 means: write data to 8042's P2 port
|
||||
|
||||
seta20.2:
|
||||
inb $0x64, %al # Wait for not busy
|
||||
inb $0x64, %al # Wait for not busy(8042 input buffer empty).
|
||||
testb $0x2, %al
|
||||
jnz seta20.2
|
||||
|
||||
movb $0xdf, %al # 0xdf -> port 0x60
|
||||
outb %al, $0x60
|
||||
outb %al, $0x60 # 0xdf = 11011111, means set P2's A20 bit(the 1 bit) to 1
|
||||
|
||||
# Switch from real to protected mode, using a bootstrap GDT
|
||||
# and segment translation that makes virtual addresses
|
||||
|
@ -8,9 +8,9 @@
|
||||
#include <clock.h>
|
||||
#include <intr.h>
|
||||
#include <pmm.h>
|
||||
|
||||
#include <kmonitor.h>
|
||||
int kern_init(void) __attribute__((noreturn));
|
||||
|
||||
void grade_backtrace(void);
|
||||
static void lab1_switch_test(void);
|
||||
|
||||
int
|
||||
@ -37,7 +37,7 @@ kern_init(void) {
|
||||
|
||||
//LAB1: CAHLLENGE 1 If you try to do it, uncomment lab1_switch_test()
|
||||
// user/kernel mode switch test
|
||||
//lab1_switch_test();
|
||||
lab1_switch_test();
|
||||
|
||||
/* do nothing */
|
||||
while (1);
|
||||
@ -84,11 +84,24 @@ lab1_print_cur_status(void) {
|
||||
static void
|
||||
lab1_switch_to_user(void) {
|
||||
//LAB1 CHALLENGE 1 : TODO
|
||||
asm volatile (
|
||||
"sub $0x8, %%esp \n"
|
||||
"int %0 \n"
|
||||
"movl %%ebp, %%esp"
|
||||
:
|
||||
: "i"(T_SWITCH_TOU)
|
||||
);
|
||||
}
|
||||
|
||||
static void
|
||||
lab1_switch_to_kernel(void) {
|
||||
//LAB1 CHALLENGE 1 : TODO
|
||||
asm volatile (
|
||||
"int %0 \n"
|
||||
"movl %%ebp, %%esp \n"
|
||||
:
|
||||
: "i"(T_SWITCH_TOK)
|
||||
);
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -8,7 +8,7 @@
|
||||
#include <assert.h>
|
||||
#include <console.h>
|
||||
#include <kdebug.h>
|
||||
|
||||
#include <string.h>
|
||||
#define TICK_NUM 100
|
||||
|
||||
static void print_ticks() {
|
||||
@ -51,6 +51,9 @@ idt_init(void) {
|
||||
for (i = 0; i < sizeof(idt) / sizeof(struct gatedesc); i ++) {
|
||||
SETGATE(idt[i], 0, GD_KTEXT, __vectors[i], DPL_KERNEL);
|
||||
}
|
||||
// set for switch from user to kernel
|
||||
SETGATE(idt[T_SWITCH_TOK], 0, GD_KTEXT, __vectors[T_SWITCH_TOK], DPL_USER);
|
||||
// load the IDT
|
||||
lidt(&idt_pd);
|
||||
}
|
||||
|
||||
@ -140,6 +143,9 @@ print_regs(struct pushregs *regs) {
|
||||
cprintf(" eax 0x%08x\n", regs->reg_eax);
|
||||
}
|
||||
|
||||
/* temporary trapframe or pointer to trapframe */
|
||||
struct trapframe switchk2u, *switchu2k;
|
||||
|
||||
/* trap_dispatch - dispatch based on what type of trap occurred */
|
||||
static void
|
||||
trap_dispatch(struct trapframe *tf) {
|
||||
@ -168,8 +174,30 @@ trap_dispatch(struct trapframe *tf) {
|
||||
break;
|
||||
//LAB1 CHALLENGE 1 : YOUR CODE you should modify below codes.
|
||||
case T_SWITCH_TOU:
|
||||
if (tf->tf_cs != USER_CS) {
|
||||
switchk2u = *tf;
|
||||
switchk2u.tf_cs = USER_CS;
|
||||
switchk2u.tf_ds = switchk2u.tf_es = switchk2u.tf_ss = USER_DS;
|
||||
switchk2u.tf_esp = (uint32_t)tf + sizeof(struct trapframe) - 8;
|
||||
|
||||
// set eflags, make sure ucore can use io under user mode.
|
||||
// if CPL > IOPL, then cpu will generate a general protection.
|
||||
switchk2u.tf_eflags |= FL_IOPL_MASK;
|
||||
|
||||
// set temporary stack
|
||||
// then iret will jump to the right stack
|
||||
*((uint32_t *)tf - 1) = (uint32_t)&switchk2u;
|
||||
}
|
||||
break;
|
||||
case T_SWITCH_TOK:
|
||||
panic("T_SWITCH_** ??\n");
|
||||
if (tf->tf_cs != KERNEL_CS) {
|
||||
tf->tf_cs = KERNEL_CS;
|
||||
tf->tf_ds = tf->tf_es = KERNEL_DS;
|
||||
tf->tf_eflags &= ~FL_IOPL_MASK;
|
||||
switchu2k = (struct trapframe *)(tf->tf_esp - (sizeof(struct trapframe) - 8));
|
||||
memmove(switchu2k, tf, sizeof(struct trapframe) - 8);
|
||||
*((uint32_t *)tf - 1) = (uint32_t)switchu2k;
|
||||
}
|
||||
break;
|
||||
case IRQ_OFFSET + IRQ_IDE1:
|
||||
case IRQ_OFFSET + IRQ_IDE2:
|
||||
|
469
labcodes_answer/lab1_result/report.txt
Normal file
469
labcodes_answer/lab1_result/report.txt
Normal file
@ -0,0 +1,469 @@
|
||||
Lab1 report
|
||||
[练习1]
|
||||
|
||||
[练习1.1] 操作系统镜像文件 ucore.img 是如何一步一步生成的?(需要比较详细地解释 Makefile 中
|
||||
每一条相关命令和命令参数的含义,以及说明命令导致的结果)
|
||||
|
||||
bin/ucore.img
|
||||
| 生成ucore.img的相关代码为
|
||||
| $(UCOREIMG): $(kernel) $(bootblock)
|
||||
| $(V)dd if=/dev/zero of=$@ count=10000
|
||||
| $(V)dd if=$(bootblock) of=$@ conv=notrunc
|
||||
| $(V)dd if=$(kernel) of=$@ seek=1 conv=notrunc
|
||||
|
|
||||
| 为了生成ucore.img,首先需要生成bootblock、kernel
|
||||
|
|
||||
|> bin/bootblock
|
||||
| | 生成bootblock的相关代码为
|
||||
| | $(bootblock): $(call toobj,$(bootfiles)) | $(call totarget,sign)
|
||||
| | @echo + ld $@
|
||||
| | $(V)$(LD) $(LDFLAGS) -N -e start -Ttext 0x7C00 $^ \
|
||||
| | -o $(call toobj,bootblock)
|
||||
| | @$(OBJDUMP) -S $(call objfile,bootblock) > \
|
||||
| | $(call asmfile,bootblock)
|
||||
| | @$(OBJCOPY) -S -O binary $(call objfile,bootblock) \
|
||||
| | $(call outfile,bootblock)
|
||||
| | @$(call totarget,sign) $(call outfile,bootblock) $(bootblock)
|
||||
| |
|
||||
| | 为了生成bootblock,首先需要生成bootasm.o、bootmain.o、sign
|
||||
| |
|
||||
| |> obj/boot/bootasm.o, obj/boot/bootmain.o
|
||||
| | | 生成bootasm.o,bootmain.o的相关makefile代码为
|
||||
| | | bootfiles = $(call listf_cc,boot)
|
||||
| | | $(foreach f,$(bootfiles),$(call cc_compile,$(f),$(CC),\
|
||||
| | | $(CFLAGS) -Os -nostdinc))
|
||||
| | | 实际代码由宏批量生成
|
||||
| | |
|
||||
| | | 生成bootasm.o需要bootasm.S
|
||||
| | | 实际命令为
|
||||
| | | gcc -Iboot/ -fno-builtin -Wall -ggdb -m32 -gstabs \
|
||||
| | | -nostdinc -fno-stack-protector -Ilibs/ -Os -nostdinc \
|
||||
| | | -c boot/bootasm.S -o obj/boot/bootasm.o
|
||||
| | | 其中关键的参数为
|
||||
| | | -ggdb 生成可供gdb使用的调试信息
|
||||
| | | -m32 生成适用于32位环境的代码
|
||||
| | | -gstabs 生成stabs格式的调试信息
|
||||
| | | -nostdinc 不使用标准库
|
||||
| | | -fno-stack-protector 不生成用于检测缓冲区溢出的代码
|
||||
| | | -Os 为减小代码大小而进行优化
|
||||
| | | -I<dir> 添加搜索头文件的路径
|
||||
| | |
|
||||
| | | 生成bootmain.o需要bootmain.c
|
||||
| | | 实际命令为
|
||||
| | | gcc -Iboot/ -fno-builtin -Wall -ggdb -m32 -gstabs -nostdinc \
|
||||
| | | -fno-stack-protector -Ilibs/ -Os -nostdinc \
|
||||
| | | -c boot/bootmain.c -o obj/boot/bootmain.o
|
||||
| | | 新出现的关键参数有
|
||||
| | | -fno-builtin 除非用__builtin_前缀,
|
||||
| | | 否则不进行builtin函数的优化
|
||||
| |
|
||||
| |> bin/sign
|
||||
| | | 生成sign工具的makefile代码为
|
||||
| | | $(call add_files_host,tools/sign.c,sign,sign)
|
||||
| | | $(call create_target_host,sign,sign)
|
||||
| | |
|
||||
| | | 实际命令为
|
||||
| | | gcc -Itools/ -g -Wall -O2 -c tools/sign.c \
|
||||
| | | -o obj/sign/tools/sign.o
|
||||
| | | gcc -g -Wall -O2 obj/sign/tools/sign.o -o bin/sign
|
||||
| |
|
||||
| | 首先生成bootblock.o
|
||||
| | ld -m elf_i386 -nostdlib -N -e start -Ttext 0x7C00 \
|
||||
| | obj/boot/bootasm.o obj/boot/bootmain.o -o obj/bootblock.o
|
||||
| | 其中关键的参数为
|
||||
| | -m <emulation> 模拟为i386上的连接器
|
||||
| | -nostdlib 不使用标准库
|
||||
| | -N 设置代码段和数据段均可读写
|
||||
| | -e <entry> 指定入口
|
||||
| | -Ttext 制定代码段开始位置
|
||||
| |
|
||||
| | 拷贝二进制代码bootblock.o到bootblock.out
|
||||
| | objcopy -S -O binary obj/bootblock.o obj/bootblock.out
|
||||
| | 其中关键的参数为
|
||||
| | -S 移除所有符号和重定位信息
|
||||
| | -O <bfdname> 指定输出格式
|
||||
| |
|
||||
| | 使用sign工具处理bootblock.out,生成bootblock
|
||||
| | bin/sign obj/bootblock.out bin/bootblock
|
||||
|
|
||||
|> bin/kernel
|
||||
| | 生成kernel的相关代码为
|
||||
| | $(kernel): tools/kernel.ld
|
||||
| | $(kernel): $(KOBJS)
|
||||
| | @echo + ld $@
|
||||
| | $(V)$(LD) $(LDFLAGS) -T tools/kernel.ld -o $@ $(KOBJS)
|
||||
| | @$(OBJDUMP) -S $@ > $(call asmfile,kernel)
|
||||
| | @$(OBJDUMP) -t $@ | $(SED) '1,/SYMBOL TABLE/d; s/ .* / /; \
|
||||
| | /^$$/d' > $(call symfile,kernel)
|
||||
| |
|
||||
| | 为了生成kernel,首先需要 kernel.ld init.o readline.o stdio.o kdebug.o
|
||||
| | kmonitor.o panic.o clock.o console.o intr.o picirq.o trap.o
|
||||
| | trapentry.o vectors.o pmm.o printfmt.o string.o
|
||||
| | kernel.ld已存在
|
||||
| |
|
||||
| |> obj/kern/*/*.o
|
||||
| | | 生成这些.o文件的相关makefile代码为
|
||||
| | | $(call add_files_cc,$(call listf_cc,$(KSRCDIR)),kernel,\
|
||||
| | | $(KCFLAGS))
|
||||
| | | 这些.o生成方式和参数均类似,仅举init.o为例,其余不赘述
|
||||
| |> obj/kern/init/init.o
|
||||
| | | 编译需要init.c
|
||||
| | | 实际命令为
|
||||
| | | gcc -Ikern/init/ -fno-builtin -Wall -ggdb -m32 \
|
||||
| | | -gstabs -nostdinc -fno-stack-protector \
|
||||
| | | -Ilibs/ -Ikern/debug/ -Ikern/driver/ \
|
||||
| | | -Ikern/trap/ -Ikern/mm/ -c kern/init/init.c \
|
||||
| | | -o obj/kern/init/init.o
|
||||
| |
|
||||
| | 生成kernel时,makefile的几条指令中有@前缀的都不必需
|
||||
| | 必需的命令只有
|
||||
| | ld -m elf_i386 -nostdlib -T tools/kernel.ld -o bin/kernel \
|
||||
| | obj/kern/init/init.o obj/kern/libs/readline.o \
|
||||
| | obj/kern/libs/stdio.o obj/kern/debug/kdebug.o \
|
||||
| | obj/kern/debug/kmonitor.o obj/kern/debug/panic.o \
|
||||
| | obj/kern/driver/clock.o obj/kern/driver/console.o \
|
||||
| | obj/kern/driver/intr.o obj/kern/driver/picirq.o \
|
||||
| | obj/kern/trap/trap.o obj/kern/trap/trapentry.o \
|
||||
| | obj/kern/trap/vectors.o obj/kern/mm/pmm.o \
|
||||
| | obj/libs/printfmt.o obj/libs/string.o
|
||||
| | 其中新出现的关键参数为
|
||||
| | -T <scriptfile> 让连接器使用指定的脚本
|
||||
|
|
||||
| 生成一个有10000个块的文件,每个块默认512字节,用0填充
|
||||
| dd if=/dev/zero of=bin/ucore.img count=10000
|
||||
|
|
||||
| 把bootblock中的内容写到第一个块
|
||||
| dd if=bin/bootblock of=bin/ucore.img conv=notrunc
|
||||
|
|
||||
| 从第二个块开始写kernel中的内容
|
||||
| dd if=bin/kernel of=bin/ucore.img seek=1 conv=notrunc
|
||||
|
||||
[练习1.2] 一个被系统认为是符合规范的硬盘主引导扇区的特征是什么?
|
||||
|
||||
从sign.c的代码来看,一个磁盘主引导扇区只有512字节。且
|
||||
第510个(倒数第二个)字节是0x55,
|
||||
第511个(倒数第一个)字节是0xAA。
|
||||
|
||||
|
||||
|
||||
[练习2]
|
||||
|
||||
[练习2.1] 从 CPU 加电后执行的第一条指令开始,单步跟踪 BIOS 的执行。
|
||||
|
||||
通过改写Makefile文件 ()
|
||||
debug: $(UCOREIMG)
|
||||
$(V)$(TERMINAL) -e "$(QEMU) -S -s -d in_asm -D $(BINDIR)/q.log -parallel stdio -hda $< -serial null"
|
||||
$(V)sleep 2
|
||||
$(V)$(TERMINAL) -e "gdb -q -tui -x tools/gdbinit"
|
||||
在调用qemu时增加-d in_asm -D q.log参数,便可以将运行的汇编指令保存在q.log中。
|
||||
为防止qemu在gdb连接后立即开始执行,删除了tools/gdbinit中的"continue"行。
|
||||
|
||||
[练习2.2] 在初始化位置0x7c00 设置实地址断点,测试断点正常。
|
||||
|
||||
在tools/gdbinit结尾加上
|
||||
set architecture i8086 //设置当前调试的CPU是8086
|
||||
b *0x7c00 //在0x7c00处设置断点。此地址是bootloader入口点地址,可看boot/bootasm.S的start地址处
|
||||
c //continue简称,表示继续执行
|
||||
x /2i $pc //显示当前eip处的汇编指令
|
||||
set architecture i386 //设置当前调试的CPU是80386
|
||||
|
||||
运行"make debug"便可得到
|
||||
Breakpoint 2, 0x00007c00 in ?? ()
|
||||
=> 0x7c00: cli
|
||||
0x7c01: cld
|
||||
0x7c02: xor %eax,%eax
|
||||
0x7c04: mov %eax,%ds
|
||||
0x7c06: mov %eax,%es
|
||||
0x7c08: mov %eax,%ss
|
||||
0x7c0a: in $0x64,%al
|
||||
0x7c0c: test $0x2,%al
|
||||
0x7c0e: jne 0x7c0a
|
||||
0x7c10: mov $0xd1,%al
|
||||
|
||||
[练习2.3] 在调用qemu 时增加-d in_asm -D q.log 参数,便可以将运行的汇编指令保存在q.log 中。
|
||||
将执行的汇编代码与bootasm.S 和 bootblock.asm 进行比较,看看二者是否一致。
|
||||
|
||||
在tools/gdbinit结尾加上
|
||||
b *0x7c00
|
||||
c
|
||||
x /10i $pc
|
||||
便可以在q.log中读到"call bootmain"前执行的命令
|
||||
----------------
|
||||
IN:
|
||||
0x00007c00: cli
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c01: cld
|
||||
0x00007c02: xor %ax,%ax
|
||||
0x00007c04: mov %ax,%ds
|
||||
0x00007c06: mov %ax,%es
|
||||
0x00007c08: mov %ax,%ss
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c0a: in $0x64,%al
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c0c: test $0x2,%al
|
||||
0x00007c0e: jne 0x7c0a
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c10: mov $0xd1,%al
|
||||
0x00007c12: out %al,$0x64
|
||||
0x00007c14: in $0x64,%al
|
||||
0x00007c16: test $0x2,%al
|
||||
0x00007c18: jne 0x7c14
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c1a: mov $0xdf,%al
|
||||
0x00007c1c: out %al,$0x60
|
||||
0x00007c1e: lgdtw 0x7c6c
|
||||
0x00007c23: mov %cr0,%eax
|
||||
0x00007c26: or $0x1,%eax
|
||||
0x00007c2a: mov %eax,%cr0
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c2d: ljmp $0x8,$0x7c32
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c32: mov $0x10,%ax
|
||||
0x00007c36: mov %eax,%ds
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c38: mov %eax,%es
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c3a: mov %eax,%fs
|
||||
0x00007c3c: mov %eax,%gs
|
||||
0x00007c3e: mov %eax,%ss
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c40: mov $0x0,%ebp
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007c45: mov $0x7c00,%esp
|
||||
0x00007c4a: call 0x7d0d
|
||||
|
||||
----------------
|
||||
IN:
|
||||
0x00007d0d: push %ebp
|
||||
其与bootasm.S和bootblock.asm中的代码相同。
|
||||
|
||||
[练习3] 分析bootloader 进入保护模式的过程。
|
||||
|
||||
从%cs=0 $pc=0x7c00,进入后
|
||||
|
||||
首先清理环境:包括将flag置0和将段寄存器置0
|
||||
.code16
|
||||
cli
|
||||
cld
|
||||
xorw %ax, %ax
|
||||
movw %ax, %ds
|
||||
movw %ax, %es
|
||||
movw %ax, %ss
|
||||
|
||||
开启A20:通过将键盘控制器上的A20线置于高电位,全部32条地址线可用,
|
||||
可以访问4G的内存空间。
|
||||
seta20.1: # 等待8042键盘控制器不忙
|
||||
inb $0x64, %al #
|
||||
testb $0x2, %al #
|
||||
jnz seta20.1 #
|
||||
|
||||
movb $0xd1, %al # 发送写8042输出端口的指令
|
||||
outb %al, $0x64 #
|
||||
|
||||
seta20.1: # 等待8042键盘控制器不忙
|
||||
inb $0x64, %al #
|
||||
testb $0x2, %al #
|
||||
jnz seta20.1 #
|
||||
|
||||
movb $0xdf, %al # 打开A20
|
||||
outb %al, $0x60 #
|
||||
|
||||
初始化GDT表:一个简单的GDT表和其描述符已经静态储存在引导区中,载入即可
|
||||
lgdt gdtdesc
|
||||
|
||||
进入保护模式:通过将cr0寄存器PE位置1便开启了保护模式
|
||||
movl %cr0, %eax
|
||||
orl $CR0_PE_ON, %eax
|
||||
movl %eax, %cr0
|
||||
|
||||
通过长跳转更新cs的基地址
|
||||
ljmp $PROT_MODE_CSEG, $protcseg
|
||||
.code32
|
||||
protcseg:
|
||||
|
||||
设置段寄存器,并建立堆栈
|
||||
movw $PROT_MODE_DSEG, %ax
|
||||
movw %ax, %ds
|
||||
movw %ax, %es
|
||||
movw %ax, %fs
|
||||
movw %ax, %gs
|
||||
movw %ax, %ss
|
||||
movl $0x0, %ebp
|
||||
movl $start, %esp
|
||||
|
||||
转到保护模式完成,进入boot主方法
|
||||
call bootmain
|
||||
|
||||
|
||||
|
||||
[练习4] :分析bootloader加载ELF格式的OS的过程。
|
||||
|
||||
首先看readsect函数,
|
||||
readsect从设备的第secno扇区读取数据到dst位置
|
||||
static void
|
||||
readsect(void *dst, uint32_t secno) {
|
||||
waitdisk();
|
||||
|
||||
outb(0x1F2, 1); // 设置读取扇区的数目为1
|
||||
outb(0x1F3, secno & 0xFF);
|
||||
outb(0x1F4, (secno >> 8) & 0xFF);
|
||||
outb(0x1F5, (secno >> 16) & 0xFF);
|
||||
outb(0x1F6, ((secno >> 24) & 0xF) | 0xE0);
|
||||
// 上面四条指令联合制定了扇区号
|
||||
// 在这4个字节线联合构成的32位参数中
|
||||
// 29-31位强制设为1
|
||||
// 28位(=0)表示访问"Disk 0"
|
||||
// 0-27位是28位的偏移量
|
||||
outb(0x1F7, 0x20); // 0x20命令,读取扇区
|
||||
|
||||
waitdisk();
|
||||
|
||||
insl(0x1F0, dst, SECTSIZE / 4); // 读取到dst位置,
|
||||
// 幻数4因为这里以DW为单位
|
||||
}
|
||||
|
||||
readseg简单包装了readsect,可以从设备读取任意长度的内容。
|
||||
static void
|
||||
readseg(uintptr_t va, uint32_t count, uint32_t offset) {
|
||||
uintptr_t end_va = va + count;
|
||||
|
||||
va -= offset % SECTSIZE;
|
||||
|
||||
uint32_t secno = (offset / SECTSIZE) + 1;
|
||||
// 加1因为0扇区被引导占用
|
||||
// ELF文件从1扇区开始
|
||||
|
||||
for (; va < end_va; va += SECTSIZE, secno ++) {
|
||||
readsect((void *)va, secno);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
在bootmain函数中,
|
||||
void
|
||||
bootmain(void) {
|
||||
// 首先读取ELF的头部
|
||||
readseg((uintptr_t)ELFHDR, SECTSIZE * 8, 0);
|
||||
|
||||
// 通过储存在头部的幻数判断是否是合法的ELF文件
|
||||
if (ELFHDR->e_magic != ELF_MAGIC) {
|
||||
goto bad;
|
||||
}
|
||||
|
||||
struct proghdr *ph, *eph;
|
||||
|
||||
// ELF头部有描述ELF文件应加载到内存什么位置的描述表,
|
||||
// 先将描述表的头地址存在ph
|
||||
ph = (struct proghdr *)((uintptr_t)ELFHDR + ELFHDR->e_phoff);
|
||||
eph = ph + ELFHDR->e_phnum;
|
||||
|
||||
// 按照描述表将ELF文件中数据载入内存
|
||||
for (; ph < eph; ph ++) {
|
||||
readseg(ph->p_va & 0xFFFFFF, ph->p_memsz, ph->p_offset);
|
||||
}
|
||||
// ELF文件0x1000位置后面的0xd1ec比特被载入内存0x00100000
|
||||
// ELF文件0xf000位置后面的0x1d20比特被载入内存0x0010e000
|
||||
|
||||
// 根据ELF头部储存的入口信息,找到内核的入口
|
||||
((void (*)(void))(ELFHDR->e_entry & 0xFFFFFF))();
|
||||
|
||||
bad:
|
||||
outw(0x8A00, 0x8A00);
|
||||
outw(0x8A00, 0x8E00);
|
||||
while (1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
[练习5] 实现函数调用堆栈跟踪函数
|
||||
|
||||
ss:ebp指向的堆栈位置储存着caller的ebp,以此为线索可以得到所有使用堆栈的函数ebp。
|
||||
ss:ebp+4指向caller调用时的eip,ss:ebp+8等是(可能的)参数。
|
||||
|
||||
输出中,堆栈最深一层为
|
||||
ebp:0x00007bf8 eip:0x00007d68 \
|
||||
args:0x00000000 0x00000000 0x00000000 0x00007c4f
|
||||
<unknow>: -- 0x00007d67 --
|
||||
其对应的是第一个使用堆栈的函数,bootmain.c中的bootmain。
|
||||
bootloader设置的堆栈从0x7c00开始,使用"call bootmain"转入bootmain函数。
|
||||
call指令压栈,所以bootmain中ebp为0x7bf8。
|
||||
|
||||
|
||||
|
||||
[练习6] 完善中断初始化和处理
|
||||
|
||||
[练习6.1] 中断向量表中一个表项占多少字节?其中哪几位代表中断处理代码的入口?
|
||||
|
||||
中断向量表一个表项占用8字节,其中2-3字节是段选择子,0-1字节和6-7字节拼成位移,
|
||||
两者联合便是中断处理程序的入口地址。
|
||||
|
||||
[练习6.2] 请编程完善kern/trap/trap.c中对中断向量表进行初始化的函数idt_init。
|
||||
见代码
|
||||
|
||||
[练习6.3] 请编程完善trap.c中的中断处理函数trap,在对时钟中断进行处理的部分填写trap函数
|
||||
见代码
|
||||
|
||||
|
||||
[练习7] 增加syscall功能,即增加一用户态函数(可执行一特定系统调用:获得时钟计数值),
|
||||
当内核初始完毕后,可从内核态返回到用户态的函数,而用户态的函数又通过系统调用得到内核态的服务
|
||||
|
||||
在idt_init中,将用户态调用SWITCH_TOK中断的权限打开。
|
||||
SETGATE(idt[T_SWITCH_TOK], 1, KERNEL_CS, __vectors[T_SWITCH_TOK], 3);
|
||||
|
||||
在trap_dispatch中,将iret时会从堆栈弹出的段寄存器进行修改
|
||||
对TO User
|
||||
tf->tf_cs = USER_CS;
|
||||
tf->tf_ds = USER_DS;
|
||||
tf->tf_es = USER_DS;
|
||||
tf->tf_ss = USER_DS;
|
||||
对TO Kernel
|
||||
tf->tf_cs = KERNEL_CS;
|
||||
tf->tf_ds = KERNEL_DS;
|
||||
tf->tf_es = KERNEL_DS;
|
||||
|
||||
在lab1_switch_to_user中,调用T_SWITCH_TOU中断。
|
||||
注意从中断返回时,会多pop两位,并用这两位的值更新ss,sp,损坏堆栈。
|
||||
所以要先把栈压两位,并在从中断返回后修复esp。
|
||||
asm volatile (
|
||||
"sub $0x8, %%esp \n"
|
||||
"int %0 \n"
|
||||
"movl %%ebp, %%esp"
|
||||
:
|
||||
: "i"(T_SWITCH_TOU)
|
||||
);
|
||||
|
||||
在lab1_switch_to_kernel中,调用T_SWITCH_TOK中断。
|
||||
注意从中断返回时,esp仍在TSS指示的堆栈中。所以要在从中断返回后修复esp。
|
||||
asm volatile (
|
||||
"int %0 \n"
|
||||
"movl %%ebp, %%esp \n"
|
||||
:
|
||||
: "i"(T_SWITCH_TOK)
|
||||
);
|
||||
|
||||
但这样不能正常输出文本。根据提示,在trap_dispatch中转User态时,将调用io所需权限降低。
|
||||
tf->tf_eflags |= 0x3000;
|
||||
|
||||
|
@ -70,7 +70,7 @@ endef
|
||||
# finish all
|
||||
define do_finish_all
|
||||
ALLDEPS = $$(ALLOBJS:.o=.d)
|
||||
$$(sort $$(dir $$(ALLOBJS)) $(BINDIR) $(OBJDIR)):
|
||||
$$(sort $$(dir $$(ALLOBJS)) $(BINDIR)$(SLASH) $(OBJDIR)$(SLASH)):
|
||||
@$(MKDIR) $$@
|
||||
endef
|
||||
|
||||
|
6
labcodes_answer/lab1_result/tools/lab1init
Normal file
6
labcodes_answer/lab1_result/tools/lab1init
Normal file
@ -0,0 +1,6 @@
|
||||
file bin/kernel
|
||||
target remote :1234
|
||||
set architecture i8086
|
||||
b *0x7c00
|
||||
continue
|
||||
x /2i $pc
|
3
labcodes_answer/lab1_result/tools/moninit
Normal file
3
labcodes_answer/lab1_result/tools/moninit
Normal file
@ -0,0 +1,3 @@
|
||||
file bin/kernel
|
||||
target remote :1234
|
||||
break kern_init
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -208,6 +208,8 @@ targets: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG)
|
||||
|
||||
.PHONY: qemu qemu-nox gdb debug debug-mon debug-nox
|
||||
qemu-mon: targets
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: targets
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -216,6 +216,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -220,6 +220,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -259,6 +259,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -259,6 +259,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -259,6 +259,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
@ -23,8 +23,8 @@ endif
|
||||
|
||||
# try to infer the correct QEMU
|
||||
ifndef QEMU
|
||||
QEMU := $(shell if which qemu > /dev/null; \
|
||||
then echo 'qemu'; exit; \
|
||||
QEMU := $(shell if which qemu-system-i386 > /dev/null; \
|
||||
then echo 'qemu-system-i386'; exit; \
|
||||
elif which i386-ucore-elf-qemu > /dev/null; \
|
||||
then echo 'i386-ucore-elf-qemu'; exit; \
|
||||
else \
|
||||
@ -296,6 +296,8 @@ TARGETS: $(TARGETS)
|
||||
QEMUOPTS = -hda $(UCOREIMG) -drive file=$(SWAPIMG),media=disk,cache=writeback -drive file=$(SFSIMG),media=disk,cache=writeback
|
||||
|
||||
.PHONY: qemu qemu-nox debug debug-nox monitor
|
||||
qemu-mon: $(UCOREIMG) $(SWAPIMG) $(SFSIMG)
|
||||
$(V)$(QEMU) -monitor stdio $(QEMUOPTS) -serial null
|
||||
qemu: $(UCOREIMG) $(SWAPIMG) $(SFSIMG)
|
||||
$(V)$(QEMU) -parallel stdio $(QEMUOPTS) -serial null
|
||||
|
||||
|
BIN
labdocs/lab0.pdf
BIN
labdocs/lab0.pdf
Binary file not shown.
BIN
labdocs/lab1.pdf
BIN
labdocs/lab1.pdf
Binary file not shown.
BIN
labdocs/lab2.pdf
BIN
labdocs/lab2.pdf
Binary file not shown.
BIN
labdocs/lab3.pdf
BIN
labdocs/lab3.pdf
Binary file not shown.
BIN
labdocs/lab4.pdf
BIN
labdocs/lab4.pdf
Binary file not shown.
BIN
labdocs/lab5.pdf
BIN
labdocs/lab5.pdf
Binary file not shown.
BIN
labdocs/lab6.pdf
BIN
labdocs/lab6.pdf
Binary file not shown.
BIN
labdocs/lab7.pdf
BIN
labdocs/lab7.pdf
Binary file not shown.
BIN
labdocs/lab8.pdf
BIN
labdocs/lab8.pdf
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user