SchoolWork-LaTeX/离散数学/作业/第四周作业.tex

80 lines
3.4 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[全部作业]{subfiles}
\pagestyle{fancyplain}
\fancyhead{}
\fancyhead[C]{\mysignature}
\setcounter{chapter}{3}
\setcounter{section}{2}
\begin{document}
\section{范式和联结词的功能完备集}
\begin{enumerate}
\item 通过等值演算求$p \to (p\land (q \to p))$的主析取范式和主合取范式。
\begin{proof}[解]
\begin{zhongwen}
$$
\begin{aligned}
p \to (p \land (q \to p))&=\lnot p\lor (p\land (\lnot q\lor p))=\lnot p\lor ((p\lor 0)\land (p\lor \lnot q)) \\
&=\lnot p \lor (p\lor (0 \land \lnot q)) = \lnot p \lor p = 1 \\
&=(p\land q)\lor (p\land \lnot q)\lor (\lnot p\land q)\lor (\lnot p\land \lnot q) \qquad (主析取范式)\\
\end{aligned}
$$
$$
因为原式为永真式,所以无主合取范式。
$$
\end{zhongwen}
\end{proof}
\item 证明$\{ \lnot ,\to \}$是功能完备集。
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&\lnot p=\lnot p \\
&p\lor q=\lnot p \to q \\
&\because \{ \lnot ,\lor \}是功能完备集 \\
&\therefore \{ \lnot ,\to \}是功能完备集 \\
\end{aligned}
$$
\end{zhongwen}
\end{proof}
\end{enumerate}
\section{命题逻辑的推理理论}
\begin{enumerate}
\item 证明$p \to (q \to s),q,p\lor \lnot r \Rightarrow r \to s$
\begin{proof}
\begin{zhongwen}
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $r$\hfill 附加前提引入
\item $p\lor \lnot r$ \hfill 前提引入
\item $p$\hfill \mycircle{1}\mycircle{2}析取三段论
\item $p \to (q \to s)$\hfill 前提引入
\item $q \to s$\hfill \mycircle{3}\mycircle{4}假言推理
\item $q$ \hfill 前提引入
\item $s$ \hfill \mycircle{5}\mycircle{6}假言推理
\end{enumerate}
\end{zhongwen}
\end{proof}
\item 构造下列推理的形式证明:
“今天下午没有出太阳并且今天比昨天冷。只有今天下午出太阳,我们才去游泳。若我们不去游泳,则我们乘独木舟游览。若我们乘独木舟游览,则我们在黄昏时回家。 所以,我们在黄昏时回家。”
\begin{proof}
\begin{zhongwen}
$$
\begin{aligned}
&p:今天下午出太阳q:今天比昨天冷r:我们去游泳, \\
&s:我们乘独木舟游览t:我们在黄昏时回家 \\
&则需要证明:\lnot p \land q,r \to p,\lnot r \to s, s \to t \Rightarrow t \\
\end{aligned}
$$
\begin{enumerate}[label=\mycircle{\arabic{enumii}},leftmargin=\linewidth/4,rightmargin=\linewidth/4]
\item $\lnot p\land q$\hfill 前提引入
\item $\lnot p$\hfill \mycircle{1}化简
\item $r \to p$\hfill 前提引入
\item $\lnot r$\hfill \mycircle{2}\mycircle{3}拒取式
\item $\lnot r \to s$\hfill 前提引入
\item $s$\hfill \mycircle{4}\mycircle{5}假言推理
\item $s \to t$\hfill 前提引入
\item $t$\hfill \mycircle{6}\mycircle{7}假言推理
\end{enumerate}
\end{zhongwen}
\end{proof}
\end{enumerate}
\end{document}